These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1416638)

  • 1. Single motor unit activity of human intrinsic laryngeal muscles during respiration.
    Chanaud CM; Ludlow CL
    Ann Otol Rhinol Laryngol; 1992 Oct; 101(10):832-40. PubMed ID: 1416638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing.
    Saboisky JP; Butler JE; Fogel RB; Taylor JL; Trinder JA; White DP; Gandevia SC
    J Neurophysiol; 2006 Apr; 95(4):2213-21. PubMed ID: 16306175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple motor unit recordings of laryngeal muscles: the technique of vector laryngeal electromyography.
    Roark RM; Li JC; Schaefer SD; Adam A; De Luca CJ
    Laryngoscope; 2002 Dec; 112(12):2196-203. PubMed ID: 12461341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discharge characteristics of laryngeal single motor units during phonation in young and older adults and in persons with parkinson disease.
    Luschei ES; Ramig LO; Baker KL; Smith ME
    J Neurophysiol; 1999 May; 81(5):2131-9. PubMed ID: 10322054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of increased ventilatory drive on motor unit firing rates in human inspiratory muscles.
    Gandevia SC; Gorman RB; McKenzie DK; De Troyer A
    Am J Respir Crit Care Med; 1999 Nov; 160(5 Pt 1):1598-603. PubMed ID: 10556127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional divergence of human genioglossus motor units with respiratory-related activity.
    Tsuiki S; Ono T; Ishiwata Y; Kuroda T
    Eur Respir J; 2000 May; 15(5):906-10. PubMed ID: 10853857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of fundamental frequency by laryngeal muscles during vibrato.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR
    J Voice; 1994 Sep; 8(3):224-9. PubMed ID: 7987424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Motor Unit Potential Analysis and Other Quantitative Techniques for Laryngeal Electromyogram.
    Koivu MK
    J Clin Neurophysiol; 2015 Aug; 32(4):309-13. PubMed ID: 26241240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Normal Laryngeal Electromyography of Thyroarytenoid Muscle, Cricothyroid Muscle, and Posterior Cricoarytenoid Muscle.
    Xu X; Yang P; Zhuang P; Yanchao J; Yanli M; Schrof C; Jiang JJ
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):806-811. PubMed ID: 30187765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-MUP analysis of laryngeal muscles.
    Koivu MK; Jääskeläinen SK; Falck BB
    Clin Neurophysiol; 2002 Jul; 113(7):1077-81. PubMed ID: 12088703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory-related activity of cricothyroid muscle in awake normal humans.
    Wheatley JR; Brancatisano A; Engel LA
    J Appl Physiol (1985); 1991 May; 70(5):2226-32. PubMed ID: 1864803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laryngeal synkinesis following reinnervation in the rat. Neuroanatomic and physiologic study using retrograde fluorescent tracers and electromyography.
    Flint PW; Downs DH; Coltrera MD
    Ann Otol Rhinol Laryngol; 1991 Oct; 100(10):797-806. PubMed ID: 1952645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cricothyroid muscle activity during sleep in normal adult humans.
    Kuna ST; Smickley JS; Vanoye CR; McMillan TH
    J Appl Physiol (1985); 1994 Jun; 76(6):2326-32. PubMed ID: 7928854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic origin of the respiratory-modulated activity of laryngeal motoneurons.
    Ono K; Shiba K; Nakazawa K; Shimoyama I
    Neuroscience; 2006 Jul; 140(3):1079-88. PubMed ID: 16650611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of substance P injection into the nucleus tractus solitarius of rats on cricothyroid and thyroarytenoid motor activity and cardiovascular and respiratory systems.
    Bauman NM; Wang D; Luschei ES; Talman WT
    Ann Otol Rhinol Laryngol; 2002 Oct; 111(10):875-83. PubMed ID: 12389854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cricothyroid muscle electrical activity during respiration and apneas in lambs.
    Samson N; Lafond JR; Moreau-Bussière F; Reix P; Praud JP
    Respir Physiol Neurobiol; 2007 Feb; 155(2):147-55. PubMed ID: 16713757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of laryngeal electromyography and the activity of the respiratory system during spontaneous laughter.
    Luschei ES; Ramig LO; Finnegan EM; Baker KK; Smith ME
    J Neurophysiol; 2006 Jul; 96(1):442-50. PubMed ID: 16772517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles.
    Halum SL; Shemirani NL; Merati AL; Jaradeh S; Toohill RJ
    Ann Otol Rhinol Laryngol; 2006 Apr; 115(4):312-6. PubMed ID: 16676829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laryngeal electromyography in normal Brazilian population.
    Kimaid PA; Crespo AN; Quagliato EM; Wolf A; Viana MA; Resende LA
    Electromyogr Clin Neurophysiol; 2004 Jun; 44(4):243-5. PubMed ID: 15224820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cricothyroid muscle and thyroarytenoid muscle dominance in vocal register control: preliminary results.
    Kochis-Jennings KA; Finnegan EM; Hoffman HT; Jaiswal S; Hull D
    J Voice; 2014 Sep; 28(5):652.e21-652.e29. PubMed ID: 24856144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.