These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 1416865)
21. Potential dual inhibition of SE and CYP51 by eugenol conferring inhibition of Candida albicans: Computationally curated study with experimental validation. Prajapati J; Goswami D; Dabhi M; Acharya D; Rawal RM Comput Biol Med; 2022 Dec; 151(Pt A):106237. PubMed ID: 36327880 [TBL] [Abstract][Full Text] [Related]
22. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Petranyi G; Ryder NS; Stütz A Science; 1984 Jun; 224(4654):1239-41. PubMed ID: 6547247 [TBL] [Abstract][Full Text] [Related]
23. Two mechanisms of butenafine action in Candida albicans. Iwatani W; Arika T; Yamaguchi H Antimicrob Agents Chemother; 1993 Apr; 37(4):785-8. PubMed ID: 8494375 [TBL] [Abstract][Full Text] [Related]
24. Inhibitory effect of a new mycotic agent, piritetrate on ergosterol biosynthesis in pathogenic fungi. Morita T; Iwata K; Nozawa Y J Med Vet Mycol; 1989; 27(1):17-25. PubMed ID: 2666631 [TBL] [Abstract][Full Text] [Related]
25. Enzymatic properties of squalene epoxidase from Saccharomyces cerevisiae. Satoh T; Horie M; Watanabe H; Tsuchiya Y; Kamei T Biol Pharm Bull; 1993 Apr; 16(4):349-52. PubMed ID: 8358382 [TBL] [Abstract][Full Text] [Related]
26. Correlation of inhibition of sterol synthesis with growth-inhibitory action of imidazole antimycotics in Candida albicans. Nicholas RO; Kerridge D J Antimicrob Chemother; 1989 Jan; 23(1):7-19. PubMed ID: 2663807 [TBL] [Abstract][Full Text] [Related]
27. Properties of a particulate squalene epoxidase from Candida albicans. Ryder NS; Dupont MC Biochim Biophys Acta; 1984 Jul; 794(3):466-71. PubMed ID: 6378256 [TBL] [Abstract][Full Text] [Related]
28. Inhibitory effect of terbinafine on reactive oxygen species (ROS) generation by Candida albicans. Sander CS; Hipler UC; Wollina U; Elsner P Mycoses; 2002 Jun; 45(5-6):152-5. PubMed ID: 12100530 [TBL] [Abstract][Full Text] [Related]
29. Disruption of ergosterol biosynthesis, growth, and the morphological transition in Candida albicans by sterol methyltransferase inhibitors containing sulfur at C-25 in the sterol side chain. Kanagasabai R; Zhou W; Liu J; Nguyen TT; Veeramachaneni P; Nes WD Lipids; 2004 Aug; 39(8):737-46. PubMed ID: 15638241 [TBL] [Abstract][Full Text] [Related]
30. Effects of naftifine and terbinafine, two allylamine antifungal drugs, on selected functions of human polymorphonuclear leukocytes. Vago T; Baldi G; Colombo D; Barbareschi M; Norbiato G; Dallegri F; Bevilacqua M Antimicrob Agents Chemother; 1994 Nov; 38(11):2605-11. PubMed ID: 7872755 [TBL] [Abstract][Full Text] [Related]
31. Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression. Zare B; Sepehrizadeh Z; Faramarzi MA; Soltany-Rezaee-Rad M; Rezaie S; Shahverdi AR Biotechnol Appl Biochem; 2014; 61(4):395-400. PubMed ID: 24237269 [TBL] [Abstract][Full Text] [Related]
32. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis. Zeng YB; Qian YS; Ma L; Gu HN Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of squalene epoxidase and sterol side-chain methylation by allylamines. Ryder NS Biochem Soc Trans; 1990 Feb; 18(1):45-6. PubMed ID: 2185084 [No Abstract] [Full Text] [Related]
34. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Smith WL; Edlind TD Antimicrob Agents Chemother; 2002 Nov; 46(11):3532-9. PubMed ID: 12384361 [TBL] [Abstract][Full Text] [Related]
35. The mechanism of action of terbinafine. Ryder NS Clin Exp Dermatol; 1989 Mar; 14(2):98-100. PubMed ID: 2689019 [No Abstract] [Full Text] [Related]
36. Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent. Kuchta T; Léka C; Farkas P; Bujdáková H; Belajová E; Russell NJ Antimicrob Agents Chemother; 1995 Jul; 39(7):1538-41. PubMed ID: 7492100 [TBL] [Abstract][Full Text] [Related]
37. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Hornby JM; Kebaara BW; Nickerson KW Antimicrob Agents Chemother; 2003 Jul; 47(7):2366-9. PubMed ID: 12821501 [TBL] [Abstract][Full Text] [Related]
38. Pyridines and pyrimidines mediating activity against an efflux-negative strain of Candida albicans through putative inhibition of lanosterol demethylase. Buurman ET; Blodgett AE; Hull KG; Carcanague D Antimicrob Agents Chemother; 2004 Jan; 48(1):313-8. PubMed ID: 14693556 [TBL] [Abstract][Full Text] [Related]
39. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Wentzinger LF; Bach TJ; Hartmann MA Plant Physiol; 2002 Sep; 130(1):334-46. PubMed ID: 12226513 [TBL] [Abstract][Full Text] [Related]
40. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Van den Bossche H; Willemsens G; Cools W; Cornelissen F; Lauwers WF; van Cutsem JM Antimicrob Agents Chemother; 1980 Jun; 17(6):922-8. PubMed ID: 6250469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]