These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 1417001)
21. Effect of substrate residues on the P2' preference of retroviral proteinases. Boross P; Bagossi P; Copeland TD; Oroszlan S; Louis JM; Tözsér J Eur J Biochem; 1999 Sep; 264(3):921-9. PubMed ID: 10491141 [TBL] [Abstract][Full Text] [Related]
22. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance. Laco GS Biochimie; 2015 Nov; 118():90-103. PubMed ID: 26300060 [TBL] [Abstract][Full Text] [Related]
23. Proteolytic cleavage of microtubule-associated proteins by retroviral proteinases. Wallin M; Deinum J; Goobar L; Danielson UH J Gen Virol; 1990 Sep; 71 ( Pt 9)():1985-91. PubMed ID: 2212989 [TBL] [Abstract][Full Text] [Related]
24. Comparison of the substrate-binding pockets of the Rous sarcoma virus and human immunodeficiency virus type 1 proteases. Cameron CE; Grinde B; Jacques P; Jentoft J; Leis J; Wlodawer A; Weber IT J Biol Chem; 1993 Jun; 268(16):11711-20. PubMed ID: 8389361 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and activity of tetrapeptidic HTLV-I protease inhibitors possessing different P3-cap moieties. Zhang M; Nguyen JT; Kumada HO; Kimura T; Cheng M; Hayashi Y; Kiso Y Bioorg Med Chem; 2008 May; 16(10):5795-802. PubMed ID: 18400502 [TBL] [Abstract][Full Text] [Related]
26. Kinetic and modeling studies of subsites S4-S3' of Moloney murine leukemia virus protease. Menéndez-Arias L; Weber IT; Soss J; Harrison RW; Gotte D; Oroszlan S J Biol Chem; 1994 Jun; 269(24):16795-801. PubMed ID: 8207003 [TBL] [Abstract][Full Text] [Related]
27. Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic*hydrophobic- or -aromatic*pro- cleavage sites. Griffiths JT; Phylip LH; Konvalinka J; Strop P; Gustchina A; Wlodawer A; Davenport RJ; Briggs R; Dunn BM; Kay J Biochemistry; 1992 Jun; 31(22):5193-200. PubMed ID: 1606143 [TBL] [Abstract][Full Text] [Related]
28. Modified oligopeptides designed to interact with the HIV-1 proteinase inhibit viral replication. Grinde B; Hungnes O; Tjøtta E Arch Virol; 1990; 114(3-4):167-73. PubMed ID: 2241573 [TBL] [Abstract][Full Text] [Related]
29. Cleavage specificity of the subtilisin-like protease C1 from soybean. Boyd PM; Barnaby N; Tan-Wilson A; Wilson KA Biochim Biophys Acta; 2002 Apr; 1596(2):269-82. PubMed ID: 12007608 [TBL] [Abstract][Full Text] [Related]
30. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240 [TBL] [Abstract][Full Text] [Related]
31. Hepatitis A virus 3C proteinase substrate specificity. Jewell DA; Swietnicki W; Dunn BM; Malcolm BA Biochemistry; 1992 Sep; 31(34):7862-9. PubMed ID: 1510973 [TBL] [Abstract][Full Text] [Related]
32. Structural basis for specificity of retroviral proteases. Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772 [TBL] [Abstract][Full Text] [Related]
33. Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. Tözsér J; Bagossi P; Weber IT; Copeland TD; Oroszlan S J Biol Chem; 1996 Mar; 271(12):6781-8. PubMed ID: 8636100 [TBL] [Abstract][Full Text] [Related]
34. A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. Poorman RA; Tomasselli AG; Heinrikson RL; Kézdy FJ J Biol Chem; 1991 Aug; 266(22):14554-61. PubMed ID: 1860861 [TBL] [Abstract][Full Text] [Related]
35. Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinases. Richards AD; Roberts R; Dunn BM; Graves MC; Kay J FEBS Lett; 1989 Apr; 247(1):113-7. PubMed ID: 2651157 [TBL] [Abstract][Full Text] [Related]
36. The Gag-Pol encoded proteinase of an avian retrovirus expressed in E. coli can produce a novel proteinase (PR + IleGly) that is two amino acids larger at its carboxy-terminal region than the major Gag proteinase (PR). Brynda J; Fábry M; Horejsí M; Sedlácek J Virology; 1995 Feb; 207(1):185-90. PubMed ID: 7871726 [TBL] [Abstract][Full Text] [Related]
37. Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1. Konvalinka J; Strop P; Velek J; Cerna V; Kostka V; Phylip LH; Richards AD; Dunn BM; Kay J FEBS Lett; 1990 Jul; 268(1):35-8. PubMed ID: 2200711 [TBL] [Abstract][Full Text] [Related]
38. Comparative properties of feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteinases prepared by total chemical synthesis. Schnölzer M; Rackwitz HR; Gustchina A; Laco GS; Wlodawer A; Elder JH; Kent SB Virology; 1996 Oct; 224(1):268-75. PubMed ID: 8862421 [TBL] [Abstract][Full Text] [Related]
39. X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors. Cooper J; Quail W; Frazao C; Foundling SI; Blundell TL; Humblet C; Lunney EA; Lowther WT; Dunn BM Biochemistry; 1992 Sep; 31(35):8142-50. PubMed ID: 1525155 [TBL] [Abstract][Full Text] [Related]
40. Reduced-bond tight-binding inhibitors of HIV-1 protease. Fine tuning of the enzyme subsite specificity. Urban J; Konvalinka J; Stehlíková J; Gregorová E; Majer P; Soucek M; Andreánsky M; Fábry M; Strop P FEBS Lett; 1992 Feb; 298(1):9-13. PubMed ID: 1544426 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]