These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14170330)

  • 1. [ADDITIONAL FINDINGS ON THE MECHANISM OF MICROSOMAL ASCORBIC ACID-DEPENDENT NADH-2 OXIDATION].
    BLUME E; BANNERT N; KLUGE N; FRUNDER H
    Biochim Biophys Acta; 1964 Mar; 81():590-3. PubMed ID: 14170330
    [No Abstract]   [Full Text] [Related]  

  • 2. [ON THE IMPORTANCE OF SEMI-DEHYDROASCORBIC ACID FOR MICROSOMAL ASCORBIC ACID-DEPENDENT NADH-OXIDATION].
    SCHNEIDER W; STAUDINGER H; WEIS W
    Biochim Biophys Acta; 1964 Sep; 89():548-9. PubMed ID: 14209339
    [No Abstract]   [Full Text] [Related]  

  • 3. LIPID PEROXIDATION AND BIOSYNTHESIS OF L-ASCORBIC ACID IN RAT LIVER MICROSOMES.
    CHATTERJEE IB; MCKEE RW
    Arch Biochem Biophys; 1965 May; 110():254-61. PubMed ID: 14342717
    [No Abstract]   [Full Text] [Related]  

  • 4. A mechanism of the acceleration of lipid peroxide formation in liver homogenates and subcellular fractions of vitamin E-deficient mice.
    Fukuzawa K; Uchiyama M
    J Nutr Sci Vitaminol (Tokyo); 1973 Oct; 19(5):433-53. PubMed ID: 4151985
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of microsomal cytochrome b5 in the metabolism of ethanol, drugs and the desaturation of fatty acids.
    Ozols J
    Ann Clin Res; 1976; 8 Suppl 17():182-92. PubMed ID: 12714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [MECHANISM OF ASCORBIC ACID-DEPENDENT NADH2 OXIDATION IN LIVER MICROSOMES].
    KLUGE H; BLUME E; BANNERT N; FRUNDER H
    Acta Biol Med Ger; 1964; 12():46-59. PubMed ID: 14140503
    [No Abstract]   [Full Text] [Related]  

  • 7. THE ASCORBIC ACID-DEPENDENT OXIDATION OF REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE BY CILIARY AND RETINAL MICROSOMES.
    HEATH H; FIDDICK R
    Biochem J; 1965 Jan; 94(1):114-9. PubMed ID: 14345883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the TPNH-linked lipid peroxidation of liver microsomes by drugs undergoing oxidative demethylation.
    Orrenius S; Dallner G; Ernster L
    Biochem Biophys Res Commun; 1964; 14():329-34. PubMed ID: 4378684
    [No Abstract]   [Full Text] [Related]  

  • 9. [Effect of lecithin on liver microsomal lipid peroxidation].
    Aristarkhova SA; Burlakova EB; Sheludchenko NI
    Biokhimiia; 1979 Jan; 44(1):125-9. PubMed ID: 33726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MECHANISMS OF LIPID PEROXIDE FORMATION IN TISSUES. ROLE OF METALS AND HAEMATIN PROTEINS IN THE CATALYSIS OF THE OXIDATION UNSATURATED FATTY ACIDS.
    WILLS ED
    Biochim Biophys Acta; 1965 Apr; 98():238-51. PubMed ID: 14325327
    [No Abstract]   [Full Text] [Related]  

  • 11. Protective role of brain ascorbic acid content against lipid peroxidation.
    Seregi A; Schaefer A; Komlós M
    Experientia; 1978 Aug; 34(8):1056-7. PubMed ID: 700025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE EFFECT OF ALPH-GLYCEROPHOSPHATE ON THE MICROSOMAL STIMULATION OF FATTY ACID SYNTHESIS.
    HOWARD CF; LOWENSTEIN JM
    Biochim Biophys Acta; 1964 Apr; 84():226-8. PubMed ID: 14181309
    [No Abstract]   [Full Text] [Related]  

  • 13. ROLE OF ASCORBATE AND CYSTEINE ON SWELLING AND LIPID PEROXIDATION IN RAT LIVER MITOCHONDRIA.
    FORTNEY SR; LYNN WS
    Arch Biochem Biophys; 1964 Feb; 104():241-7. PubMed ID: 14163889
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of ascorbic acid and some reducing agents on N-nitrosopiperidine metabolism by liver microsomes.
    Nakamura M; Horiguchi Y; Kawabata T
    IARC Sci Publ; 1984; (57):547-52. PubMed ID: 6241928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Semidehydro-D(-)-ascorbic acid as a substrate of microsomal NADH: semidehydroascorbate oxidoreductase (EC 1.6.5.4)].
    Oehler G; Weis W; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1972 Mar; 353(3):495-6. PubMed ID: 4337572
    [No Abstract]   [Full Text] [Related]  

  • 16. Release of phenyl acetate esterase from liver microsomes by carbon tetrachloride.
    Higashino K; Takahashi Y; Yamamura Y
    Clin Chim Acta; 1972 Oct; 41():313-20. PubMed ID: 4645240
    [No Abstract]   [Full Text] [Related]  

  • 17. [ON THE MECHANISM OF MICROSOMAL ASCORBIC ACID-DEPENDENT NADH2-OXIDATION].
    STAUDINGER H; ABRAHAM R; SCHNEIDER W
    Biochim Biophys Acta; 1963 Aug; 74():547-8. PubMed ID: 14071600
    [No Abstract]   [Full Text] [Related]  

  • 18. REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE-DEPENDENT REDUCTION OF SEMIDEHYDROASCORBIC ACID.
    SCHNEIDER W; STAUDINGER H
    Biochim Biophys Acta; 1965 Jan; 96():157-9. PubMed ID: 14285258
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of lipid oxidation by serum and albumin.
    Robak J; Duniec Z
    Acta Physiol Pol; 1986; 37(2):100-7. PubMed ID: 3098051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CORRELATION OF OXYGEN CONSUMPTION WITH SWELLING AND LIPID PEROXIDE FORMATION WHEN MITOCHONDRIA ARE TREATED WITH THE SWELLING-INDUCING AGENTS FE2+, GLUTATHIONE, ASCORBATE, OR PHOSPHATE.
    SCHNEIDER AK; SMITH EE; HUNTER FE
    Biochemistry; 1964 Oct; 3():1470-7. PubMed ID: 14230798
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.