BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1417862)

  • 1. Presence and turnover of adenosine diphosphate ribose in human erythrocytes.
    Guida L; Zocchi E; Franco L; Benatti U; De Flora A
    Biochem Biophys Res Commun; 1992 Oct; 188(1):402-8. PubMed ID: 1417862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of NAD glycohydrolase in ADP-ribose uptake from NAD by human erythrocytes.
    Kim UH; Han MK; Park BH; Kim HR; An NH
    Biochim Biophys Acta; 1993 Aug; 1178(2):121-6. PubMed ID: 8394137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD glycohydrolase activities and ADP-ribose uptake in erythrocytes from normal subjects and cancer patients.
    Albeniz I; Demir O; Nurten R; Bermek E
    Biosci Rep; 2004 Feb; 24(1):41-53. PubMed ID: 15499831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of adenosine diphosphate ribose pyrophosphatase from human erythrocytes.
    Kim JS; Kim WY; Rho HW; Park JW; Park BH; Han MK; Kim UH; Kim HR
    Int J Biochem Cell Biol; 1998 May; 30(5):629-38. PubMed ID: 9693963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine diphosphate ribulose in human erythrocytes: a new metabolite with membrane binding properties.
    Franco L; Guida L; Zocchi E; Silvestro L; Benatti U; De Flora A
    Biochem Biophys Res Commun; 1993 Feb; 190(3):1143-8. PubMed ID: 8439315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD: arginine mono-ADP-ribosyltransferases from animal cells.
    Moss J; Vaughan M
    Methods Enzymol; 1984; 106():430-7. PubMed ID: 6436644
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase.
    Muller-Steffner H; Muzard M; Oppenheimer N; Schuber F
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1279-85. PubMed ID: 7980606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free ADP-ribose in human erythrocytes: pathways of intra-erythrocytic conversion and non-enzymic binding to membrane proteins.
    Zocchi E; Guida L; Franco L; Silvestro L; Guerrini M; Benatti U; De Flora A
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):121-30. PubMed ID: 8216206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinamide adenine dinucleotide (NAD) and its metabolites inhibit T lymphocyte proliferation: role of cell surface NAD glycohydrolase and pyrophosphatase activities.
    Bortell R; Moss J; McKenna RC; Rigby MR; Niedzwiecki D; Stevens LA; Patton WA; Mordes JP; Greiner DL; Rossini AA
    J Immunol; 2001 Aug; 167(4):2049-59. PubMed ID: 11489987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells.
    Stocchi V; Cucchiarini L; Magnani M; Chiarantini L; Palma P; Crescentini G
    Anal Biochem; 1985 Apr; 146(1):118-24. PubMed ID: 3993925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated chromatographic analysis of acid-soluble red-cell phosphate compounds.
    Floridi A; Morelli A; Brunetti P
    J Lab Clin Med; 1971 Dec; 78(6):939-48. PubMed ID: 4331975
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenine and pyridine nucleotides in the erythrocyte of different mammalian species.
    Stocchi V; Cucchiarini L; Magnani M; Fornaini G
    Biochem Int; 1987 Jun; 14(6):1043-53. PubMed ID: 3453093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on adenine and adenosine metabolism by intact human erythrocytes using high performance liquid chromatography.
    Dean BM; Perrett D
    Biochim Biophys Acta; 1976 Jun; 437(1):1-5. PubMed ID: 949498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measured and calculated NAD+-NADH ratios in human erythrocytes.
    Marshall WE; Omachi A
    Biochim Biophys Acta; 1974 Jun; 354(1):1-10. PubMed ID: 4367846
    [No Abstract]   [Full Text] [Related]  

  • 15. Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif.
    Gasmi L; Cartwright JL; McLennan AG
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):331-7. PubMed ID: 10567213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage.
    Tanuma S; Endo H
    FEBS Lett; 1990 Feb; 261(2):381-4. PubMed ID: 2107103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell adenine nucleotides abnormalities in Down syndrome.
    Stocchi V; Magnani M; Cucchiarini L; Novelli G; Dallapiccola B
    Am J Med Genet; 1985 Jan; 20(1):131-5. PubMed ID: 3155912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of adenine nucleotide concentrations in human plasma by erythrocytes and endothelial cells.
    Mattig S; Knoefler R; Deussen A
    Thromb Res; 2003 Jun; 110(4):195-202. PubMed ID: 14512081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rapid and sensitive determination of the adenylate energy charge in stored erythrocytes using high pressure liquid chromatography].
    Sibrowski W; Lüdemann K; Dominka T; von Eisenhart-Rothe B; Kühnl P
    Beitr Infusionsther; 1990; 26():86-8. PubMed ID: 1703908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of intracellular concentrations of the TRPM2 agonist ADP-ribose by reversed-phase HPLC.
    Gasser A; Guse AH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Jul; 821(2):181-7. PubMed ID: 15921966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.