These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 1418191)
1. A comparison of various loading configurations of the proximal femur for the evaluation of reconstructive surgical procedures. Schmotzer H; Tchejeyan G; Song J Proc Inst Mech Eng H; 1992; 206(1):29-36. PubMed ID: 1418191 [TBL] [Abstract][Full Text] [Related]
2. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
3. Influence of head constraint and muscle forces on the strain distribution within the intact femur. Simões JA; Vaz MA; Blatcher S; Taylor M Med Eng Phys; 2000 Sep; 22(7):453-9. PubMed ID: 11165142 [TBL] [Abstract][Full Text] [Related]
4. Prosthesis design and stress profile after hip resurfacing: a finite element analysis. Heijink A; Zobitz ME; Nuyts R; Morrey BF; An KN J Orthop Surg (Hong Kong); 2008 Dec; 16(3):326-32. PubMed ID: 19126900 [TBL] [Abstract][Full Text] [Related]
5. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling. Be'ery-Lipperman M; Gefen A Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155 [TBL] [Abstract][Full Text] [Related]
6. Strain distribution in the proximal human femoral metaphysis. Cristofolini L; Juszczyk M; Taddei F; Viceconti M Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434 [TBL] [Abstract][Full Text] [Related]
7. An experimental method for the application of lateral muscle loading and its effect on femoral strain distributions. Szivek JA; Benjamin JB; Anderson PL Med Eng Phys; 2000 Mar; 22(2):109-16. PubMed ID: 10854964 [TBL] [Abstract][Full Text] [Related]
8. A fatigue loading model for investigation of iatrogenic subtrochanteric fractures of the femur. Tsai AG; Reich MS; Bensusan J; Ashworth T; Marcus RE; Akkus O Clin Biomech (Bristol); 2013; 28(9-10):981-7. PubMed ID: 24125692 [TBL] [Abstract][Full Text] [Related]
9. [Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty]. Götze C; Ehrenbrink J; Ehrenbrink H Z Orthop Unfall; 2010 Aug; 148(4):398-405. PubMed ID: 20714981 [TBL] [Abstract][Full Text] [Related]
10. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. Cheal EJ; Spector M; Hayes WC J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504 [TBL] [Abstract][Full Text] [Related]
11. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Decking R; Puhl W; Simon U; Claes LE Clin Biomech (Bristol); 2006 Jun; 21(5):495-501. PubMed ID: 16457913 [TBL] [Abstract][Full Text] [Related]
12. Effect of FE idealisation, load conditions and interface assumptions on the stress distribution and fatigue notch factor in the human femur with an endoprosthesis. Hedia HS; Barton DC; Fisher J; Elmidany TT Biomed Mater Eng; 1996; 6(3):135-52. PubMed ID: 8922259 [TBL] [Abstract][Full Text] [Related]
13. Load transfer with the Austin Moore cementless hip prosthesis. Keaveny TM; Bartel DL J Orthop Res; 1993 Mar; 11(2):272-84. PubMed ID: 8483040 [TBL] [Abstract][Full Text] [Related]
14. Effect of cup abduction angle and head lateral microseparation on contact stresses in ceramic-on-ceramic total hip arthroplasty. Sariali E; Stewart T; Jin Z; Fisher J J Biomech; 2012 Jan; 45(2):390-3. PubMed ID: 22119582 [TBL] [Abstract][Full Text] [Related]
15. The development of a physiological hip prosthesis: evaluation of the strains after implantation of a prototype of hip implant: experiment in a dry femur. Vander Sloten J; Labey L; Van Audekercke R; Van der Perre G Biomed Mater Eng; 1993; 3(1):1-13. PubMed ID: 8490530 [TBL] [Abstract][Full Text] [Related]
16. Function-orientated structural analysis of the proximal human femur. Skuban TP; Vogel T; Baur-Melnyk A; Jansson V; Heimkes B Cells Tissues Organs; 2009; 190(5):247-55. PubMed ID: 19321950 [TBL] [Abstract][Full Text] [Related]
17. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372 [TBL] [Abstract][Full Text] [Related]
18. Strain pattern following surface replacement of the hip. Ganapathi M; Evans S; Roberts P Proc Inst Mech Eng H; 2008 Jan; 222(1):13-8. PubMed ID: 18335714 [TBL] [Abstract][Full Text] [Related]
19. Finite element modeling of proximal femur with quantifiable weight-bearing area in standing position. Yang P; Lin TY; Xu JL; Zeng HY; Chen D; Xiong BL; Pang FX; Chen ZQ; He W; Wei QS; Zhang QW J Orthop Surg Res; 2020 Sep; 15(1):384. PubMed ID: 32887611 [TBL] [Abstract][Full Text] [Related]
20. Shortening of an anatomical stem, how short is short enough? An in vitro study of load transfer and primary stability. Østbyhaug PO; Klaksvik J; Romundstad P; Aamodt A Proc Inst Mech Eng H; 2013 May; 227(5):481-9. PubMed ID: 23637258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]