BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1418387)

  • 1. Membrane permeability to K+ and the control of aldosterone synthesis: effects of valinomycin and cromakalim in bovine adrenocortical cells.
    Shepherd RM; Fraser R; Kenyon CJ
    J Mol Endocrinol; 1992 Oct; 9(2):165-73. PubMed ID: 1418387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efflux of potassium ions in angiotensin II-stimulated bovine adrenocortical cells.
    Shepherd RM; Fraser R; Nichols DJ; Kenyon CJ
    J Endocrinol; 1991 Feb; 128(2):297-304. PubMed ID: 2005419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of potassium and other ions in the control of aldosterone synthesis.
    Kenyon CJ; Shepherd RM; Fraser R; Pediani JD; Elder HY
    Endocr Res; 1991; 17(1-2):225-36. PubMed ID: 1652431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionophores for monovalent cations inhibit angiotensin-stimulated aldosteronogenesis.
    Hadjokas NE; Goodfriend TL; Elliott ME; Wen SF
    J Cardiovasc Pharmacol; 1990 Feb; 15(2):291-301. PubMed ID: 1689426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cromakalim on the membrane potassium permeability of frog skeletal muscle in vitro.
    Benton DC; Haylett DG
    Br J Pharmacol; 1992 Sep; 107(1):152-5. PubMed ID: 1422569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of KN62, a Ca2+/calmodulin-dependent protein kinase II inhibitor, on adrenocortical cell aldosterone production.
    Clyne CD; Nguyen A; Rainey WE
    Endocr Res; 1995; 21(1-2):259-65. PubMed ID: 7588388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of Rb-permeable potassium channels to the relaxant and membrane hyperpolarizing actions of cromakalim, RP49356 and diazoxide in bovine tracheal smooth muscle.
    Longmore J; Bray KM; Weston AH
    Br J Pharmacol; 1991 Apr; 102(4):979-85. PubMed ID: 1855127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the cytosolic-free-Ca2+-dependency of aldosterone production in bovine adrenal glomerulosa cells. Different requirements for angiotensin II and K+.
    Capponi AM; Lew PD; Vallotton MB
    Biochem J; 1987 Oct; 247(2):335-40. PubMed ID: 3426540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells.
    Masuda Y; Yoshizumi M; Ishimura Y; Katoh I; Oka M
    Biochem Pharmacol; 1994 May; 47(10):1751-8. PubMed ID: 7515621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of valinomycin on calcium mobilization in vascular smooth muscle cells induced by angiotensin II.
    Koh E; Morimoto S; Takamoto S; Morita R; Kim S; Hironaka T; Nabata T; Onishi T; Ogihara T
    Biochem Biophys Res Commun; 1989 Jul; 162(1):491-7. PubMed ID: 2526631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta 1 inhibits aldosterone biosynthesis in cultured bovine zona glomerulosa cells.
    Gupta P; Franco-Saenz R; Mulrow PJ
    Endocrinology; 1993 Mar; 132(3):1184-8. PubMed ID: 8440178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the K(+)-channels opened by cromakalim, acetylcholine and substance P in rat aorta and porcine coronary artery.
    Bray K; Quast U
    Br J Pharmacol; 1991 Mar; 102(3):585-94. PubMed ID: 1285396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen sensitivity of potassium- and angiotensin II-stimulated aldosterone release by bovine adrenal cells.
    Brickner RC; Raff H
    J Endocrinol; 1991 Apr; 129(1):43-8. PubMed ID: 2030327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effluxes of 42K+ and 86Rb+ elicited by cromakalim (BRL 34915) in tonic and phasic vascular tissue.
    Quast U; Baumlin Y
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Sep; 338(3):319-26. PubMed ID: 3194039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective enhancement of angiotensin II- and potassium-stimulated aldosterone secretion by the calcium channel agonist BAY K 8644.
    Hausdorff WP; Aguilera G; Catt KJ
    Endocrinology; 1986 Feb; 118(2):869-74. PubMed ID: 2417828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent regulation of aldosterone production in isolated adrenal glomerulosa cells: effects of the ionophore A-23187.
    Fakunding JL; Catt KJ
    Endocrinology; 1982 Jun; 110(6):2006-10. PubMed ID: 6280983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of increases in intracellular calcium and aldosterone production induced by angiotensin II (AII): evidence for regulation by distinct AII receptor subtypes or isomorphs.
    Kocsis JF; Schimmel RJ; McIlroy PJ; Carsia RV
    Endocrinology; 1995 Apr; 136(4):1626-34. PubMed ID: 7895673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BRL 34915 (Cromakalim) stimulation of 42K efflux from rabbit arteries is modulated by calcium.
    Post JM; Smith JM; Jones AW
    J Pharmacol Exp Ther; 1989 Aug; 250(2):591-7. PubMed ID: 2760842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of angiotensin, prostaglandin E2 and indomethacin on the early and late steps of aldosterone biosynthesis in isolated adrenal cells.
    Campbell WB; Brady MT; Gomez-Sanchez CE
    J Steroid Biochem; 1986 Apr; 24(4):865-70. PubMed ID: 3458007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ouabain and potassium on protein synthesis and angiotensin-stimulated aldosterone synthesis in bovine adrenal glomerulosa cells.
    Elliott ME; Hadjokas NE; Goodfriend TL
    Endocrinology; 1986 Apr; 118(4):1469-75. PubMed ID: 3948789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.