These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 1418394)
1. Degradation of maize stem by two rumen fungal species, Piromyces communis and Caecomyces communis, in pure cultures or in association with cellulolytic bacteria. Roger V; Grenet E; Jamot J; Bernalier A; Fonty G; Gouet P Reprod Nutr Dev; 1992; 32(4):321-9. PubMed ID: 1418394 [TBL] [Abstract][Full Text] [Related]
2. Effect of Eubacterium limosum, a ruminal hydrogenotrophic bacterium, on the degradation and fermentation of cellulose by 3 species of rumen anaerobic fungi. Bernalier A; Fonty G; Bonnemoy F; Gouet P Reprod Nutr Dev; 1993; 33(6):577-84. PubMed ID: 8142039 [TBL] [Abstract][Full Text] [Related]
3. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture. Bootten TJ; Joblin KN; McArdle BH; Harris PJ J Appl Microbiol; 2011 Nov; 111(5):1086-96. PubMed ID: 21848807 [TBL] [Abstract][Full Text] [Related]
4. Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Joblin KN; Matsui H; Naylor GE; Ushida K Curr Microbiol; 2002 Jul; 45(1):46-53. PubMed ID: 12029527 [TBL] [Abstract][Full Text] [Related]
5. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls. Miron J; Duncan SH; Stewart CS J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547 [TBL] [Abstract][Full Text] [Related]
6. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. Koike S; Kobayashi Y FEMS Microbiol Lett; 2001 Nov; 204(2):361-6. PubMed ID: 11731149 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer). Weimer PJ; Hatfield RD; Buxton DR Appl Environ Microbiol; 1993 Feb; 59(2):405-9. PubMed ID: 8434909 [TBL] [Abstract][Full Text] [Related]
8. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y; Odt CL; Weimer PJ Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950 [TBL] [Abstract][Full Text] [Related]
9. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Odenyo AA; Mackie RI; Stahl DA; White BA Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202 [TBL] [Abstract][Full Text] [Related]
10. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA. DEHORITY BA J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590 [TBL] [Abstract][Full Text] [Related]
11. Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially. Fondevila M; Dehority BA J Appl Bacteriol; 1994 Nov; 77(5):541-8. PubMed ID: 8002478 [TBL] [Abstract][Full Text] [Related]
12. Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi. Roger V; Fonty G; Andre C; Gouet P Curr Microbiol; 1992 Oct; 25(4):197-201. PubMed ID: 1368974 [TBL] [Abstract][Full Text] [Related]
13. Effect of anaerobic fungi on glycoside hydrolase and polysaccharide depolymerase activities, in sacco straw degradation and volatile fatty acid concentrations in the rumen of gnotobiotically reared lambs. Fonty G; Williams AG; Bonnemoy F; Withers SE; Gouet P Reprod Nutr Dev; 1995; 35(3):329-37. PubMed ID: 7612171 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. Bernalier A; Fonty G; Bonnemoy F; Gouet P J Gen Microbiol; 1993 Apr; 139(4):873-80. PubMed ID: 8515242 [TBL] [Abstract][Full Text] [Related]
15. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. Fondevila M; Dehority BA J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727 [TBL] [Abstract][Full Text] [Related]
17. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Shi Y; Weimer PJ Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600 [TBL] [Abstract][Full Text] [Related]
18. Magnesium requirement of some of the principal rumen cellulolytic bacteria. Morales MS; Dehority BA Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132 [TBL] [Abstract][Full Text] [Related]
19. Degradation of cellulose and forage fiber fractions by ruminal cellulolytic bacteria alone and in coculture with phenolic monomer-degrading bacteria. Varel VH; Jung HG; Krumholz LR J Anim Sci; 1991 Dec; 69(12):4993-5000. PubMed ID: 1667013 [TBL] [Abstract][Full Text] [Related]
20. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Miron J; Ben-Ghedalia D Can J Microbiol; 1993 Aug; 39(8):780-6. PubMed ID: 8221378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]