These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 14184856)

  • 1. ANALYSIS OF NEURON DIFFERENTIATION IN THE CENTRAL NERVOUS SYSTEM BY TRITIATED THYMIDINE AUTORADIOGRAPHY.
    FUJITA S
    J Comp Neurol; 1964 Jun; 122():311-27. PubMed ID: 14184856
    [No Abstract]   [Full Text] [Related]  

  • 2. Time is of the essence: the molecular mechanisms of primary microcephaly.
    Phan TP; Holland AJ
    Genes Dev; 2021 Dec; 35(23-24):1551-1578. PubMed ID: 34862179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cutting and Floating Method for Paraffin-embedded Tissue for Sectioning.
    Qin C; Bai Y; Zeng Z; Wang L; Luo Z; Wang S; Zou S
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30247474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development.
    Rapacioli M; Palma V; Flores V
    Front Cell Neurosci; 2016; 10():67. PubMed ID: 27013978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF2 delays tectal neurogenesis, increases tectal cell numbers, and alters tectal lamination in embryonic chicks.
    McGowan LD; Alaama RA; Striedter GF
    PLoS One; 2013; 8(11):e79949. PubMed ID: 24265789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors.
    Gaber ZB; Butler SJ; Novitch BG
    PLoS Biol; 2013 Oct; 11(10):e1001676. PubMed ID: 24115909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunolocalization of cation-chloride cotransporters in the developing and mature spinal cord of opossums, Monodelphis domestica.
    Phan HL; Pflieger JF
    Front Neuroanat; 2013; 7():12. PubMed ID: 23720613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental profiling of postnatal dentate gyrus progenitors provides evidence for dynamic cell-autonomous regulation.
    Gilley JA; Yang CP; Kernie SG
    Hippocampus; 2011 Jan; 21(1):33-47. PubMed ID: 20014381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial and axonal regeneration following spinal cord injury.
    Shibuya S; Yamamoto T; Itano T
    Cell Adh Migr; 2009; 3(1):99-106. PubMed ID: 19372750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and differentiation of neural rosettes derived from human embryonic stem cells.
    Wilson PG; Stice SS
    Stem Cell Rev; 2006; 2(1):67-77. PubMed ID: 17142889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum.
    Fujita S
    J Cell Biol; 1967 Feb; 32(2):277-87. PubMed ID: 10976221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord.
    Shibata T; Yamada K; Watanabe M; Ikenaka K; Wada K; Tanaka K; Inoue Y
    J Neurosci; 1997 Dec; 17(23):9212-9. PubMed ID: 9364068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways.
    Altman J; Bayer SA
    Exp Brain Res; 1981; 42(3-4):424-34. PubMed ID: 7238681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A golgi study on the early sequence of differentiation of ganglion cells in the chick embryo retina.
    Prada C; Puelles L; Génis-Gálvez JM
    Anat Embryol (Berl); 1981; 161(3):305-17. PubMed ID: 7187824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferating ability, morphological development and acetylcholinesterase activity of the neural tube cells in early chick embryos. An electron microscopic study.
    Miki A; Mizoguti H
    Histochemistry; 1982; 76(3):303-14. PubMed ID: 7161150
    [No Abstract]   [Full Text] [Related]  

  • 16. The median ventricular formation. A distinct structure at the mesencephalic apex.
    Raedler E; Raedler A; Wegener G
    Anat Embryol (Berl); 1982 Dec; 165(3):377-87. PubMed ID: 7158819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathogenesis of abnormal cytoarchitecture in the cerebral cortex and hippocampus of the mouse treated transplacentally with cytosine arabinoside.
    Shimada M; Abe Y; Yamano T; Ohta S; Yamazaki S; Ohya N
    Acta Neuropathol; 1982; 58(3):159-67. PubMed ID: 7158296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the development of the spinal cord of the clawed frog, Xenopus laevis. II. Experimental analysis of differentiation and migration.
    Thors F; de Kort EJ; Nieuwenhuys R
    Anat Embryol (Berl); 1982; 164(3):443-54. PubMed ID: 7137590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of chick spinal cord in tissue culture. III. Neuronal precursor cells in culture.
    Fedoroff S; Krukoff TL; Fisher KR
    In Vitro; 1982 Mar; 18(3 Pt 1):183-95. PubMed ID: 7129473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of structures of the cochlear complex, olfactory bulbs, and cerebellum during postnatal development in rats.
    Ivanova SN
    Neurosci Behav Physiol; 1984; 14(1):35-41. PubMed ID: 6717770
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.