These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 14185583)

  • 41. Comparison of the contribution from different energy-linked reactions to the function of a membrane potential in photosynthetic bacteria.
    Nore BF; Sakai Y; Baltscheffsky M
    Biochim Biophys Acta; 1990 Feb; 1015(2):189-94. PubMed ID: 23387095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores.
    Cusanovich MA; Bartsch RG; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):397-417. PubMed ID: 4296025
    [No Abstract]   [Full Text] [Related]  

  • 43. Isolation and characterization of a membrane-bound, low-potential c-type cytochrome from purple photosynthetic bacteria, with special reference to Rhodospirillum rubrum.
    Yoch DC; Carithers RP; Arnon DI
    J Bacteriol; 1978 Dec; 136(3):1018-26. PubMed ID: 214418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores: characteristics in the presence of o-phenanthroline.
    Arata H; Takamiya K; Nishimura M
    J Biochem; 1977 Apr; 81(4):1133-9. PubMed ID: 881414
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria.
    Philipson KD; Sauer K
    Biochemistry; 1973 Jan; 12(3):535-9. PubMed ID: 4630407
    [No Abstract]   [Full Text] [Related]  

  • 46. Light-induced electron transefer in Chromatium strain D. 3. Photophosphorylation by Chromatium chromatophores.
    Cusanovich MA; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):418-26. PubMed ID: 4384457
    [No Abstract]   [Full Text] [Related]  

  • 47. [Photooxidation and light-induced transport of phenazine methosulfate in chromatophores of purple bacteria].
    Bulychev AA; Grishanova NP; Karagulian AK; Kononenko AA; Kurella GA
    Biokhimiia; 1981 Jun; 46(6):1057-66. PubMed ID: 6789897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modification by immobilization of the microenvironment of chromatophores of Rhodopseudomonas capsulata. The influence on light-induced ADP phosphorylation coupled to cyclic electron transport.
    Garde VL; Gellf G; Thomas D
    Eur J Biochem; 1981 May; 116(2):337-9. PubMed ID: 7250130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nature of photochemical reactions in chromatophores of Chromatium D. I. Effects of isooctane extraction on the photochemical reactions of P890 and ubiquinone in chromatophores of Chromatium D.
    Takamiya KI; Takamiya A
    Biochim Biophys Acta; 1970 Apr; 205(1):72-85. PubMed ID: 5439519
    [No Abstract]   [Full Text] [Related]  

  • 50. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria.
    Jackson JB; Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1973 Jan; 292(1):218-25. PubMed ID: 4705131
    [No Abstract]   [Full Text] [Related]  

  • 51. [Light-induced oxygen uptake by chromatophores and subchromatophore pigment-protein complexes of Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1977 Nov; 42(11):1997-2004. PubMed ID: 412525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.
    Bashford CL; Chance B; Prince RC
    Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple light-induced reactions of cytochromes b and c in Rhodopseudomonas spheroides.
    Jones OT
    Biochem J; 1969 Oct; 114(4):793-9. PubMed ID: 4310060
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunological studies on function of NADH: quinone oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):523-8. PubMed ID: 4146750
    [No Abstract]   [Full Text] [Related]  

  • 55. Electrochromic absorbance changes of photosynthetic pigments in Rhodopseudomonas sphaeroides. I. Stimulation by secondary electron transport at low temperature.
    de Grooth BG; Amesz J
    Biochim Biophys Acta; 1977 Nov; 462(2):237-46. PubMed ID: 588564
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Near-infrared absorption spectra of light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum.
    Hayashi H; Morita S
    J Biochem; 1980 Nov; 88(5):1251-8. PubMed ID: 7462180
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-induced intravesicular pH changes in Rhodospirillum rubrum chromatophores.
    Chance B; Nishimura M; Avron M; Baltscheffsky M
    Arch Biochem Biophys; 1966 Oct; 117(1):158-66. PubMed ID: 5971736
    [No Abstract]   [Full Text] [Related]  

  • 58. The function of ubiquinone-10 both in the electron transport system and in the energy conservation system of chromatophores from Rhodospirillum rubrum.
    Yamamoto N; Hatakeyama H; Nishikawa K; Horio T
    J Biochem; 1970 Apr; 67(4):587-98. PubMed ID: 5453049
    [No Abstract]   [Full Text] [Related]  

  • 59. Quantum yield for the photoproduced electron paramagnetic resonance signal in chromatophores from Rhodospirillum rubrum.
    Loach PA; Walsh K
    Biochemistry; 1969 May; 8(5):1908-13. PubMed ID: 4306637
    [No Abstract]   [Full Text] [Related]  

  • 60. Reconstruction of photosynthetic, cyclic electron transport system from photoreaction unit, ubiquinone-10 protein, cytochrome c2 and polar lipids purified from Rhodospirillum rubrum.
    Matsuda H; Nishi N; Tsuji K; Tanaka K; Kakuno T; Yamashita J; Horio T
    J Biochem; 1984 Feb; 95(2):431-42. PubMed ID: 6325401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.