These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 1418686)
1. Anisoosmostic liver perfusion: redox shifts and modulation of alpha-ketoisocaproate and glycine metabolism. Häussinger D; Stoll B; Morimoto Y; Lang F; Gerok W Biol Chem Hoppe Seyler; 1992 Aug; 373(8):723-34. PubMed ID: 1418686 [TBL] [Abstract][Full Text] [Related]
2. Effect of anisotonic cell-volume modulation on glutathione-S-conjugate release, t-butylhydroperoxide metabolism and the pentose-phosphate shunt in perfused rat liver. Saha N; Stoll B; Lang F; Häussinger D Eur J Biochem; 1992 Oct; 209(1):437-44. PubMed ID: 1396717 [TBL] [Abstract][Full Text] [Related]
3. Role of pyruvate transporter in the regulation of the pyruvate dehydrogenase multienzyme complex in perfused rat liver. Zwiebel FM; Schwabe U; Olson MS; Scholz R Biochemistry; 1982 Jan; 21(2):346-53. PubMed ID: 7074018 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the glycine cleavage system in the isolated perfused rat liver. Hampson RK; Taylor MK; Olson MS J Biol Chem; 1984 Jan; 259(2):1180-5. PubMed ID: 6420402 [TBL] [Abstract][Full Text] [Related]
5. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates. Krebs HA; Gascoyne T Biochem J; 1968 Jul; 108(4):513-20. PubMed ID: 4299127 [TBL] [Abstract][Full Text] [Related]
6. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. I. Regulation of branched chain alpha-ketoacid metabolism. Williamson JR; Wałajtys-Rode E; Coll KE J Biol Chem; 1979 Nov; 254(22):11511-20. PubMed ID: 500655 [TBL] [Abstract][Full Text] [Related]
7. Effects of anisotonicity on pentose-phosphate pathway, oxidized glutathione release and t-butylhydroperoxide-induced oxidative stress in the perfused liver of air-breathing catfish, Clarias batrachus. Saha N; Goswami C J Biosci; 2004 Jun; 29(2):179-87. PubMed ID: 15286415 [TBL] [Abstract][Full Text] [Related]
8. Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Hüssinger D; Lang F; Bauers K; Gerok W Eur J Biochem; 1990 Nov; 193(3):891-8. PubMed ID: 2249700 [TBL] [Abstract][Full Text] [Related]
9. TNF-alpha and IL-6 synergistically inhibit ketogenesis from fatty acids and alpha-ketoisocaproate in isolated rat hepatocytes. Pailla K; Lim SK; De Bandt JP; Aussel C; Giboudeau J; Troupel S; Cynober L; Blonde-Cynober F JPEN J Parenter Enteral Nutr; 1998; 22(5):286-90. PubMed ID: 9739031 [TBL] [Abstract][Full Text] [Related]
10. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Tosh D; Alberti GM; Agius L Biochem J; 1988 Nov; 256(1):197-204. PubMed ID: 3223900 [TBL] [Abstract][Full Text] [Related]
11. Regulation of hepatic glycine catabolism by glucagon. Jois M; Hall B; Fewer K; Brosnan JT J Biol Chem; 1989 Feb; 264(6):3347-51. PubMed ID: 2536745 [TBL] [Abstract][Full Text] [Related]
12. Stimulation by alpha-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver. Taylor WM; Reinhart PH; Bygrave FL Biochem J; 1983 Jun; 212(3):555-65. PubMed ID: 6882384 [TBL] [Abstract][Full Text] [Related]
13. Interactions between plasticizers and fatty acid metabolism in the perfused rat liver and in vivo. Inhibition of ketogenesis by 2-ethylhexanol. Badr MZ; Handler JA; Whittaker M; Kauffman FC; Thurman RG Biochem Pharmacol; 1990 Feb; 39(4):715-21. PubMed ID: 2306279 [TBL] [Abstract][Full Text] [Related]
14. Prooxidant activity of fisetin: effects on energy metabolism in the rat liver. Constantin RP; Constantin J; Pagadigorria CL; Ishii-Iwamoto EL; Bracht A; de Castro CV; Yamamoto NS J Biochem Mol Toxicol; 2011; 25(2):117-26. PubMed ID: 20957679 [TBL] [Abstract][Full Text] [Related]
15. Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis and CO2 production following addition of octanoate and oleate in perfused rat liver. Scholz R; Schwabe U; Soboll S Eur J Biochem; 1984 May; 141(1):223-30. PubMed ID: 6426957 [TBL] [Abstract][Full Text] [Related]
16. Compartmentation of 14CO2 in the perfused rat liver. Marsolais C; Huot S; David F; Garneau M; Brunengraber H J Biol Chem; 1987 Feb; 262(6):2604-7. PubMed ID: 3102472 [TBL] [Abstract][Full Text] [Related]
17. Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat liver. Vom Dahl S; Häussinger D J Nutr; 1996 Feb; 126(2):395-402. PubMed ID: 8632211 [TBL] [Abstract][Full Text] [Related]
18. Control of ketogenesis in the perfused rat liver by the sympathetic innervation. Beuers U; Beckh K; Jungermann K Eur J Biochem; 1986 Jul; 158(1):19-24. PubMed ID: 3732268 [TBL] [Abstract][Full Text] [Related]
19. Increased secretion of triglyceride and cholesterol following inhibition of long-chain fatty acid oxidation in rat liver. Yamamoto K; Fukuda N; Fukui M; Kai Y; Ikeda H; Sakai T Ann Nutr Metab; 1996; 40(3):157-64. PubMed ID: 8862698 [TBL] [Abstract][Full Text] [Related]
20. The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic interaction of L-glutamine and 2-ketoisocaproate in pancreatic islets. Malaisse WJ; Sener A; Malaisse-Legae F; Hutton JC; Christophe J Biochim Biophys Acta; 1981 Sep; 677(1):39-49. PubMed ID: 7028130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]