These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14187297)

  • 1. DIFFUSION IN INSECT WING MUSCLE, THE MOST ACTIVE TISSUE KNOWN.
    WEIS-FOGH T
    J Exp Biol; 1964 Jun; 41():229-56. PubMed ID: 14187297
    [No Abstract]   [Full Text] [Related]  

  • 2. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings.
    Clark-Hachtel CM; Tomoyasu Y
    Nat Ecol Evol; 2020 Dec; 4(12):1694-1702. PubMed ID: 32747770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NERVOUS REGULATION OF INSECT WING FUNCTION.
    SVIDERSKII VL
    Fed Proc Transl Suppl; 1964; 23():213-7. PubMed ID: 14145638
    [No Abstract]   [Full Text] [Related]  

  • 4. Circulation in Insect Wings.
    Salcedo MK; Socha JJ
    Integr Comp Biol; 2020 Nov; 60(5):1208-1220. PubMed ID: 32870980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flight-tone and wing-stroke frequency of insects and the dynamics of insect flight.
    SOTAVALTA O
    Nature; 1952 Dec; 170(4338):1057-8. PubMed ID: 13013315
    [No Abstract]   [Full Text] [Related]  

  • 6. Chordwise wing flexibility may passively stabilize hovering insects.
    Bluman JE; Sridhar MK; Kang CK
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flight efficiency is a key to diverse wing morphologies in small insects.
    Engels T; Kolomenskiy D; Lehmann FO
    J R Soc Interface; 2021 Oct; 18(183):20210518. PubMed ID: 34665973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect wing damage: causes, consequences and compensatory mechanisms.
    Rajabi H; Dirks JH; Gorb SN
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32366698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power requirements for the hovering flight of insects with different sizes.
    Lyu YZ; Sun M
    J Insect Physiol; 2021 Oct; 134():104293. PubMed ID: 34389411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.
    Prokop J; Pecharová M; Nel A; Hörnschemeyer T; Krzemińska E; Krzemiński W; Engel MS
    Curr Biol; 2017 Jan; 27(2):263-269. PubMed ID: 28089512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Remarks on the structure of fibrils of the muscles of the insect wing, at the level of the M streak].
    Auber J
    C R Acad Hebd Seances Acad Sci D; 1967 Jun; 264(25):2916-8. PubMed ID: 4965028
    [No Abstract]   [Full Text] [Related]  

  • 13. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures.
    Tomoyasu Y
    Curr Opin Genet Dev; 2021 Aug; 69():48-55. PubMed ID: 33647834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings.
    Clark-Hachtel C; Fernandez-Nicolas A; Belles X; Tomoyasu Y
    Evol Dev; 2021 Mar; 23(2):100-116. PubMed ID: 33503322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation-based insect-inspired flight systems.
    Liu H
    Curr Opin Insect Sci; 2020 Dec; 42():105-109. PubMed ID: 33068784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dermaptera (Insecta): a guide for hind wing stretching and hind wing preservation.
    Heleodoro RA; Rafael JA
    Zootaxa; 2020 Feb; 4732(3):zootaxa.4732.3.9. PubMed ID: 32230254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for wing development in the Late Palaeozoic Palaeodictyoptera revisited.
    Rosová K; Sinitshenkova ND; Prokop J
    Arthropod Struct Dev; 2021 Jul; 63():101061. PubMed ID: 34098321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.