These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 14188725)

  • 21. [VALUE OF SERUM ORNITHINE-CITRULLINE-TRANSCARBAMYLASE DETERMINATION IN INTERNAL MEDICINE].
    DIERICK L
    Belg Tijdschr Geneesk; 1963 Oct; 19():1091-4. PubMed ID: 14098158
    [No Abstract]   [Full Text] [Related]  

  • 22. Isolation of Escherichia coli mutants with changed regulation of uracil uptake.
    Fast R
    J Bacteriol; 1978 Dec; 136(3):839-43. PubMed ID: 363695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The molecular basis of ornithine transcarbamylase deficiency: modelling the human enzyme and the effects of mutations.
    Tuchman M; Morizono H; Reish O; Yuan X; Allewell NM
    J Med Genet; 1995 Sep; 32(9):680-8. PubMed ID: 8544185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Effects on carbamoyl phosphate and pyrimidine biosynthesis and on uracil uptake.
    Piérard A; Glansdorff N; Yashphe J
    Mol Gen Genet; 1972; 118(3):235-45. PubMed ID: 4343250
    [No Abstract]   [Full Text] [Related]  

  • 25. Chemical rescue by guanidine derivatives of an arginine-substituted site-directed mutant of Escherichia coli ornithine transcarbamylase.
    Rynkiewicz MJ; Seaton BA
    Biochemistry; 1996 Dec; 35(50):16174-9. PubMed ID: 8973189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS.
    GOSS WA; DEITZ WH; COOK TM
    J Bacteriol; 1965 Apr; 89(4):1068-74. PubMed ID: 14276097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between cell-free synthesis of ornithine transcarbamylase and protein synthesis.
    Rogers P
    Arch Biochem Biophys; 1965 Jul; 111(1):39-53. PubMed ID: 5322092
    [No Abstract]   [Full Text] [Related]  

  • 28. A single mutation in the active site swaps the substrate specificity of N-acetyl-L-ornithine transcarbamylase and N-succinyl-L-ornithine transcarbamylase.
    Shi D; Yu X; Cabrera-Luque J; Chen TY; Roth L; Morizono H; Allewell NM; Tuchman M
    Protein Sci; 2007 Aug; 16(8):1689-99. PubMed ID: 17600144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical and genetic characterization of a carbamyl phosphate synthetase mutant of Escherichia coli K12.
    Bolivar F; Galván M; Martuscelli J
    J Gen Microbiol; 1976 May; 94(1):142-8. PubMed ID: 180236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli B.
    Jacoby GA
    J Bacteriol; 1971 Nov; 108(2):645-51. PubMed ID: 4942757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. APPARENT INDUCTION OF ORNITHINE TRANSCARBAMYLASE AND ARGINASE BY ARGININE IN BACILLUS LICHENIFORMIS.
    RAMALEY RF; BERNLOHR RW
    J Mol Biol; 1965 Apr; 11():842-4. PubMed ID: 14338793
    [No Abstract]   [Full Text] [Related]  

  • 32. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis.
    Kuo LC; Miller AW; Lee S; Kozuma C
    Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ornithine transcarbamylase from Neurospora crassa: purification and properties.
    Bates M; Weiss RL; Clarke S
    Arch Biochem Biophys; 1985 May; 239(1):172-83. PubMed ID: 3159341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. OXAMIC TRANSCARBAMYLASE OF STREPTOCOCCUS ALLANTOICUS.
    BOJANOWSKI R; GAUDY E; VALENTINE RC; WOLFE RS
    J Bacteriol; 1964 Jan; 87(1):75-80. PubMed ID: 14102876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyanate specifically inhibits arginine biosynthesis in Escherichia coli K12: a case of by-product inhibition?
    Guilloton M; Karst F
    J Gen Microbiol; 1987 Mar; 133(3):655-65. PubMed ID: 3309166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation.
    Paulus TJ; Switzer RL
    J Bacteriol; 1979 Dec; 140(3):769-73. PubMed ID: 230177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatine.
    Polo LM; Gil-Ortiz F; Cantín A; Rubio V
    PLoS One; 2012; 7(2):e31528. PubMed ID: 22363663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration of regulation of arginine biosynthesis in Escherichia coli W by mutation to rifampin resistance.
    Wozny ME; Carnevale HN; Jones EE
    Biochim Biophys Acta; 1975 Feb; 383(1):106-16. PubMed ID: 1091297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of ornithine transcarbamylase in cells and protoplasts of Escherichia coli.
    ROGERS P; NOVELLI GD
    Biochim Biophys Acta; 1959 Jun; 33(2):423-36. PubMed ID: 13670913
    [No Abstract]   [Full Text] [Related]  

  • 40. Arginine-specific carbamoyl phosphate metabolism in mitochondria of Neurospora crassa. Channeling and control by arginine.
    Davis RH; Ristow JL
    J Biol Chem; 1987 May; 262(15):7109-17. PubMed ID: 2953716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.