These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14189898)

  • 21. LIGHT STIMULATION OF THE RESPIRATORY ACTIVITY OF RHODOSPIRILLUM RUBRUM CHROMATOPHORES.
    KIKUCHI G; YAMADA H; SATO H
    Biochim Biophys Acta; 1964 May; 79():446-55. PubMed ID: 14179444
    [No Abstract]   [Full Text] [Related]  

  • 22. Photochemical activities of K3Fe(CN)6-treated chromatophores from Rhodospirillum rubrum.
    Beugeling T
    Biochim Biophys Acta; 1968 Jan; 153(1):143-53. PubMed ID: 5638384
    [No Abstract]   [Full Text] [Related]  

  • 23. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of diqiuat (1,1'-ethylene-2,2'-dipyridylium dibromide) on the formation and photoreactions of chromatophores from Rhodospirillum rubrum.
    Kaneshiro T; Zweig G
    Biochim Biophys Acta; 1966 Oct; 126(2):225-33. PubMed ID: 5971848
    [No Abstract]   [Full Text] [Related]  

  • 25. AN ATTEMPT AT QUANTITATION OF THE SHARP LIGHT-INDUCED ELECTRON PARAMAGNETIC RESONANCE SIGNAL IN PHOTOSYNTHETIC MATERIALS.
    BEINERT H; KOK B
    Biochim Biophys Acta; 1964 Sep; 88():278-88. PubMed ID: 14249836
    [No Abstract]   [Full Text] [Related]  

  • 26. Spectral and photochemical properties of subchromatophore fractions derived from carotenoid-deficient Chromatium by triton treatment.
    Ke B; Chaney TH
    Biochim Biophys Acta; 1971 Mar; 226(2):341-53. PubMed ID: 5575163
    [No Abstract]   [Full Text] [Related]  

  • 27. Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodospirillum rubrum.
    Loach PA; Hadsell RM; Sekura DL; Stemer A
    Biochemistry; 1970 Aug; 9(16):3127-35. PubMed ID: 4321367
    [No Abstract]   [Full Text] [Related]  

  • 28. Primary oxidation-reduction changes during photosynthesis in Rhodospirillum rubrum.
    Loach PA
    Biochemistry; 1966 Feb; 5(2):592-600. PubMed ID: 4287373
    [No Abstract]   [Full Text] [Related]  

  • 29. Absorption changes in bacterial chromatophores. II. A new chlorophyll-like pigment from the oxidation of chromatophores from Rhodospirillum rubrum.
    Gould ES; Kuntz ID; Calvin M
    Photochem Photobiol; 1965 Jun; 4(3):483-90. PubMed ID: 5873425
    [No Abstract]   [Full Text] [Related]  

  • 30. ABSORPTION CHANGES IN BACTERIAL CHROMATOPHORES.
    KUNTZ ID; LOACH PA; CALVIN M
    Biophys J; 1964 May; 4(3):227-49. PubMed ID: 14185583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The formation of a quencher of the fluorescence of chromatophores from photosynthetic bacteria.
    Mayne BC
    Biochim Biophys Acta; 1965 Sep; 109(1):59-66. PubMed ID: 5864031
    [No Abstract]   [Full Text] [Related]  

  • 32. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 33. [Interaction of redox mediators with chromatophores of the photosynthetic bacterium Rhodospirillum rubrum].
    Sled' VD; VerkhovskiÄ­ MI; Shinkarev VP; Mulkidzhanian AIa; Grishanova NP
    Mol Biol (Mosk); 1983; 17(1):33-41. PubMed ID: 6408397
    [No Abstract]   [Full Text] [Related]  

  • 34. Kinetics of P-870 absorbance changes induced in Rhodospirillum rubrum chromatophores by laser flashes.
    Parson WW
    Brookhaven Symp Biol; 1966; 19():95-101. PubMed ID: 5966930
    [No Abstract]   [Full Text] [Related]  

  • 35. Two different pigments capable of light-induced absorbance change at near infra-red region in chromatophores from Rhodospirillum rubrum.
    Okayama S; Kakuno T; Horio T
    J Biochem; 1970 Jul; 68(1):19-29. PubMed ID: 5452762
    [No Abstract]   [Full Text] [Related]  

  • 36. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Yike NJ
    Arch Biochem Biophys; 1967 Aug; 121(2):415-22. PubMed ID: 4293589
    [No Abstract]   [Full Text] [Related]  

  • 37. Investigation of the mechanism of spectral changes in carotenoids in the chromatophores of Rhodospirillum rubrum.
    Glinskii VP; Samuilov VD; Skulachev VP
    Mol Biol; 1972; 6(5):533-7. PubMed ID: 4350135
    [No Abstract]   [Full Text] [Related]  

  • 38. p-Phenylenediamines as electron donors for photosynthetic pyridine nucleotide reduction in chromatophores from Rhodospirillum rubrum.
    Trebst A; Pistorius E; Baltscheffsky H
    Biochim Biophys Acta; 1967 Jul; 143(1):257-60. PubMed ID: 4383018
    [No Abstract]   [Full Text] [Related]  

  • 39. [Change in the absorption spectra of carotenoids in dry films of Rhodospirillum rubrum chromatophores in an external electric field].
    Borisevich GP; Kononenko AA; Venediktov PS; Verkhoturov VN; Rubin AB
    Biofizika; 1975; 20(2):250-3. PubMed ID: 807260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of temperature on the dark reduction of photooxidized bacteriochlorophyll P870 in Rhodospirillum rubrum photosynthetic bacteria].
    Lukashev EP; Noks PP; Kononenko AA; Venediktov PS; Rubin AB
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (7):48-55. PubMed ID: 809066
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.