These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 141909)

  • 21. Regulatory effects of ATP and calcium on the myofibrillar ATPase of frog sartorius muscle.
    Chaplain RA; Gergs U
    Biochem Biophys Res Commun; 1974 Nov; 61(1):297-305. PubMed ID: 4280308
    [No Abstract]   [Full Text] [Related]  

  • 22. ATP-dependent Ca uptake of brain microsomes.
    Otsuki I
    J Biochem; 1969 Nov; 66(5):645-50. PubMed ID: 4243336
    [No Abstract]   [Full Text] [Related]  

  • 23. Influence of some divalent cations on heart sarcolemmal bound enzymes and calcium binding.
    Harrow JA; Das PK; Dhalla NS
    Biochem Pharmacol; 1978; 27(22):2605-9. PubMed ID: 153143
    [No Abstract]   [Full Text] [Related]  

  • 24. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. IV. Adenosine triphosphate-- activated uptake of calcium by microsomes and mitochondria.
    Poisner AM; Hava M
    Mol Pharmacol; 1970 Jul; 6(4):407-15. PubMed ID: 4246825
    [No Abstract]   [Full Text] [Related]  

  • 25. Partial resolution and reconstitution of the Ca++ transport system of sarcoplasmic reticulum.
    Mac Lennan DH
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():507-17. PubMed ID: 4283220
    [No Abstract]   [Full Text] [Related]  

  • 26. Localization of adenylate cyclase in skeletal muscle sarcoplasmic reticulum and its relation to calcium accumulation.
    Raible DG; Cutler LS; Rodan GA
    FEBS Lett; 1978 Jan; 85(1):149-52. PubMed ID: 145956
    [No Abstract]   [Full Text] [Related]  

  • 27. Calcium binding and ATPase activities of heart sarcolemma.
    Dhalla NS; Anand MB; Harrow JA
    J Biochem; 1976 Jun; 79(6):1345-50. PubMed ID: 134031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting calcium accumulation and release in canine submandibular salivary microsomes.
    Watson EL; Siegel IA
    Arch Oral Biol; 1978; 23(4):323-8. PubMed ID: 150838
    [No Abstract]   [Full Text] [Related]  

  • 29. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies.
    Yamamoto T; Tonomura Y
    J Biochem; 1967 Nov; 62(5):558-75. PubMed ID: 4231496
    [No Abstract]   [Full Text] [Related]  

  • 30. Kinetics of the cooperativity of the Ca2+-transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction.
    Neet KE; Green NM
    Arch Biochem Biophys; 1977 Jan; 178(2):588-97. PubMed ID: 138391
    [No Abstract]   [Full Text] [Related]  

  • 31. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium transport in isolated sarcoplasmic reticulum during muscle maturation.
    Fanburg BL; Drachman DB; Moll D; Roth SI
    Nature; 1968 Jun; 218(5145):962-4. PubMed ID: 4234574
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of potentiators of muscular contraction on contractile and enzymatic activities of sarcolemma.
    Carvalho AP; Madeira VM; Antunes-Madeira MC
    Biochim Biophys Acta; 1971 May; 234(2):210-21. PubMed ID: 4254828
    [No Abstract]   [Full Text] [Related]  

  • 34. Heavy metals and spermatozoan motility. II. Turbidity changes induced by divalent cations and adenosinetriphosphate in sea urchin sperm flagella.
    Morisawa M; Mori H
    Exp Cell Res; 1974 Jan; 83(1):87-94. PubMed ID: 4360097
    [No Abstract]   [Full Text] [Related]  

  • 35. Divalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in cardiac Na+ channels.
    Ravindran A; Schild L; Moczydlowski E
    J Gen Physiol; 1991 Jan; 97(1):89-115. PubMed ID: 1848885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further evidence for the role of bivalent cations in human polymorphonuclear leukocyte locomotion: recovery from tetracycline-induced inhibition in the presence of cation ionophores.
    Goodhart GL
    J Reticuloendothel Soc; 1979 May; 25(5):545-54. PubMed ID: 379329
    [No Abstract]   [Full Text] [Related]  

  • 37. Relationship between ion exchange-type cation binding and ATP-dependent calcium uptake in brain microsomes.
    Satomi D
    J Biochem; 1974 Aug; 76(2):391-6. PubMed ID: 4279249
    [No Abstract]   [Full Text] [Related]  

  • 38. Nucleotide and divalent cation interactions with the (Na+ plus K+)-dependent ATPase.
    Robinson JD
    Biochim Biophys Acta; 1974 Mar; 341(1):232-47. PubMed ID: 4364117
    [No Abstract]   [Full Text] [Related]  

  • 39. Calcium metabolism in cardiac microsomes incubated with lanthanum ion.
    Entman ML; Hansen JL; Cook JW
    Biochem Biophys Res Commun; 1969 Apr; 35(2):258-64. PubMed ID: 4239104
    [No Abstract]   [Full Text] [Related]  

  • 40. Contraction of glycerol extracted fibres of smooth muscle by acetylcholine and imidazole in the presence of a Ca-binding microsomal fraction from rabbit colon.
    Nilsson K; Djärv L; Andersson RG
    Acta Physiol Scand; 1976 Dec; 98(4):407-11. PubMed ID: 826118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.