BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 141927)

  • 21. Assembly of the adenosine triphosphatase complex in Escherichia coli: assembly of F0 is dependent on the formation of specific F1 subunits.
    Cox GB; Downie JA; Langman L; Senior AE; Ash G; Fayle DR; Gibson F
    J Bacteriol; 1981 Oct; 148(1):30-42. PubMed ID: 6457026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and properties of Escherichia coli ATPase mutants with altered divalent metal specificity for ATP hydrolysis.
    Thipayathasana P
    Biochim Biophys Acta; 1975 Oct; 408(1):47-57. PubMed ID: 240443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salmonella typhimurium HfrA, a mutant in which adenosine triphosphate can drive amino acid transport but not energy-dependent nicotinamide nucleotide transhydrogenation.
    Kay WW; Bragg PD
    Biochem J; 1975 Jul; 150(1):21-9. PubMed ID: 128357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus.
    Hasan SM; Tsuchiya T; Rosen BP
    J Bacteriol; 1978 Jan; 133(1):108-13. PubMed ID: 145432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of the inactive Ca2+, Mg2+-activated adenosine triphosphatase of the unc A- mutant Escherichia coli AN120.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1977 Jan; 178(2):486-94. PubMed ID: 13731
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of uncoupler on "downhill" substrate efflux of Escherichia coli is dependent on (Mg2+, Ca2+). Adenosine triphosphatase.
    Rotman B
    J Cell Physiol; 1976 Dec; 89(4):561-6. PubMed ID: 137904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative phosphorylation in Escherichia coli K-12: the genetic and biochemical characterisations of a strain carrying a mutation in the uncB gene.
    Butlin JD; Cox GB; Gibson F
    Biochim Biophys Acta; 1973 Feb; 292(2):366-75. PubMed ID: 4145024
    [No Abstract]   [Full Text] [Related]  

  • 28. Energy coupling to active transport in anaerobically grown mutants of Escherichia Coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1976 Mar; 154(3):731-4. PubMed ID: 133673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between the oxidative phosphorylation genes of Escherichia coli k12 and the nitrogen fixation gene cluster of Klebsiella pneumoniae.
    Skotnicki ML; Rolfe BG
    Biochem Biophys Res Commun; 1977 Apr; 75(3):651-8. PubMed ID: 140682
    [No Abstract]   [Full Text] [Related]  

  • 30. [Systems of H+-K+-exchange in E. coli. Interplay with ATPase complex F1.F0].
    Martirosov SM; Trchunian AA
    Biofizika; 1981; 26(6):1033-6. PubMed ID: 6459129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 32. Biochemical and genetic studies on the assembly and function of the F1-F0 adenosine triphosphatase of Escherichia coli.
    Gibson F
    Biochem Soc Trans; 1983 Jun; 11(3):229-40. PubMed ID: 6192020
    [No Abstract]   [Full Text] [Related]  

  • 33. Subunits of the adenosine triphosphatase complex translated in vitro from the Escherichia coli unc operon.
    Downie JA; Langman L; Cox GB; Yanofsky C; Gibson F
    J Bacteriol; 1980 Jul; 143(1):8-17. PubMed ID: 6447144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of mutants of Escherichia coli uncoupled in oxidative phosphorylation using hypersensitivity to streptomycin.
    Muir ME; Wallace BJ
    Biochim Biophys Acta; 1979 Aug; 547(2):218-29. PubMed ID: 380650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of Escherichia coli mutants with alterations in Mg2+-adenosine triphosphatase.
    Adler LW; Rosen BP
    J Bacteriol; 1976 Oct; 128(1):248-56. PubMed ID: 135756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport.
    Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3336-40. PubMed ID: 4343963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The F1F0-ATPase of Escherichia coli. Substitution of proline by leucine at position 64 in the c-subunit causes loss of oxidative phosphorylation.
    Fimmel AL; Jans DA; Langman L; James LB; Ash GR; Downie JA; Senior AE; Gibson F; Cox GB
    Biochem J; 1983 Aug; 213(2):451-8. PubMed ID: 6193778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Escherichia coli mutant exhibiting temperature-sensitive ATP synthesis.
    Ito M; Nakamura M; Nagamune H; Morikawa N; Terada H
    Biochem Biophys Res Commun; 1986 Jul; 138(1):72-7. PubMed ID: 3527165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beta-galactoside transport and proton movements in an adenosine triphosphatase-deficient mutant of Escherichia coli.
    Rosen BP
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1289-96. PubMed ID: 4270657
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.