BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 14197908)

  • 1. EFFECT OF POLYAMINE STRUCTURE ON GROWTH STIMULATION AND SPERMINE AND SPERMIDINE CONTENT OF LACTIC ACID BACTERIA.
    GUIRARD BM; SNELL EE
    J Bacteriol; 1964 Jul; 88(1):72-80. PubMed ID: 14197908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of acylated polyamine derivatives on polyamine uptake mechanism, cell growth, and polyamine pools in Escherichia coli, and the pursuit of structure/activity relationships.
    Karahalios P; Mamos P; Vynios DH; Papaioannou D; Kalpaxis DL
    Eur J Biochem; 1998 Feb; 251(3):998-1004. PubMed ID: 9490078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine.
    Pegg AE
    Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine requirements of a conditional polyamine auxotroph of Escherichia coli.
    Munro GF; Bell CA
    J Bacteriol; 1973 Aug; 115(2):469-75. PubMed ID: 4579867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of polyamines by Staphylococcus.
    ROSENTHAL SM; DUBIN DT
    J Bacteriol; 1962 Oct; 84(4):859-63. PubMed ID: 13974996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative abilities of bis(ethyl) derivatives of putrescine, spermidine, and spermine to regulate polyamine biosynthesis and inhibit L1210 leukemia cell growth.
    Porter CW; McManis J; Casero RA; Bergeron RJ
    Cancer Res; 1987 Jun; 47(11):2821-5. PubMed ID: 3567905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamine stress at high pH in Escherichia coli K-12.
    Yohannes E; Thurber AE; Wilks JC; Tate DP; Slonczewski JL
    BMC Microbiol; 2005 Oct; 5():59. PubMed ID: 16223443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli.
    Raina A; Jansen M; Cohen SS
    J Bacteriol; 1967 Nov; 94(5):1684-96. PubMed ID: 4863983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of polyamine biosynthesis by follicle-stimulating hormone in serum-free cultures of rat Sertoli cells.
    Swift TA; Dias JA
    Endocrinology; 1987 Jan; 120(1):394-400. PubMed ID: 3023035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a COS cell line deficient in polyamine transport.
    Hyvönen T; Seiler N; Persson L
    Biochim Biophys Acta; 1994 Apr; 1221(3):279-85. PubMed ID: 8167149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine effects on DNA-directed RNA polymerases in the ciliate Tetrahymena thermophila. In vivo- and in vitro-experiments suggesting highly specific regulative interactions.
    Eichler W; Corr R
    Biol Chem Hoppe Seyler; 1989 May; 370(5):451-66. PubMed ID: 2472814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts.
    Pegg AE; Borchardt RT; Coward JK
    Biochem J; 1981 Jan; 194(1):79-89. PubMed ID: 7305994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells.
    Holm I; Persson L; Pegg AE; Heby O
    Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamine stimulation of nucleic acid synthesis in an uninfected and phage-infected polyamine auxotroph of Escherichia coli K12 (arginine-agmatine ureohydrolase-putrescine-spermidine-lysine-cadaverine).
    Dion AS; Cohen SS
    Proc Natl Acad Sci U S A; 1972 Jan; 69(1):213-7. PubMed ID: 4550506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine changes during senescence and tumorogenesis in plants.
    Srivastava BI
    Mech Ageing Dev; 1987 Sep; 40(1):17-30. PubMed ID: 3695590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgenic control of polyamine concentrations in rat epididymis.
    de las Heras MA; Gonzalez SI; Calandra RS
    J Reprod Fertil; 1992 Sep; 96(1):323-30. PubMed ID: 1432964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.
    Yuan Q; Ray RM; Viar MJ; Johnson LR
    Am J Physiol Gastrointest Liver Physiol; 2001 Jan; 280(1):G130-8. PubMed ID: 11123206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback regulation of polyamine synthesis in Ehrlich ascites tumor cells. Analysis using nonmetabolizable derivatives of putrescine and spermine.
    Holm I; Persson L; Heby O; Seiler N
    Biochim Biophys Acta; 1988 Dec; 972(3):239-48. PubMed ID: 3196761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.