BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1419967)

  • 1. Gelation of globular proteins: effect of pH and ionic strength on the critical concentration for gel formation. A simple model and its application to beta-lactoglobulin heat-induced gelation.
    Renard D; Lefebvre J
    Int J Biol Macromol; 1992 Oct; 14(5):287-91. PubMed ID: 1419967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the ionic strength on the heat-induced aggregation of the globular protein beta-lactoglobulin at pH 7.
    Baussay K; Bon CL; Nicolai T; Durand D; Busnel JP
    Int J Biol Macromol; 2004 Apr; 34(1-2):21-8. PubMed ID: 15178005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrostatic interactions on the percolation concentration of fibrillar beta-lactoglobulin gels.
    Veerman C; Ruis H; Sagis LM; van der Linden E
    Biomacromolecules; 2002; 3(4):869-73. PubMed ID: 12099836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrillar beta-lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2420-9. PubMed ID: 15530059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of temperature and ionic strength on the dimerisation of beta-lactoglobulin.
    Aymard P; Durand D; Nicolai T
    Int J Biol Macromol; 1996 Oct; 19(3):213-21. PubMed ID: 8910062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and beta-lactoglobulin at neutral pH.
    Mahmoudi N; Mehalebi S; Nicolai T; Durand D; Riaublanc A
    J Agric Food Chem; 2007 Apr; 55(8):3104-11. PubMed ID: 17378578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions.
    Ikeda S; Nishinari K; Foegeding EA
    Biopolymers; 2000-2001; 56(2):109-19. PubMed ID: 11592057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular differences in the formation and structure of fine-stranded and particulate beta-lactoglobulin gels.
    Lefèvre T; Subirade M
    Biopolymers; 2000 Dec; 54(7):578-86. PubMed ID: 10984409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging.
    Woo HD; Moon TW; Gunasekaran S; Ko S
    J Dairy Sci; 2013 Sep; 96(9):5565-74. PubMed ID: 23871379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrillar beta-lactoglobulin gels: Part 3. Dynamic mechanical characterization of solvent-induced systems.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2430-8. PubMed ID: 15530060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of heat-induced aggregation of globular proteins.
    Delahaije RJ; Wierenga PA; Giuseppin ML; Gruppen H
    J Agric Food Chem; 2015 Jun; 63(21):5257-65. PubMed ID: 25965109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin.
    Loveday SM; Rao MA; Creamer LK; Singh H
    J Food Sci; 2009 Apr; 74(3):R47-55. PubMed ID: 19397731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S; Harnau L; Jung JM; Mezzenga R
    Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH and salt environment on the association of beta-lactoglobulin revealed by intrinsic fluorescence studies.
    Renard D; Lefebvre J; Griffin MC; Griffin WG
    Int J Biol Macromol; 1998 Feb; 22(1):41-9. PubMed ID: 9513815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and chemical interactions in cold gelation of food proteins.
    Alting AC; de Jongh HH; Visschers RW; Simons JW
    J Agric Food Chem; 2002 Jul; 50(16):4682-9. PubMed ID: 12137497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gel structure on the dissolution of heat-induced beta-lactoglobulin gels in alkali.
    Mercadé-Prieto R; Falconer RJ; Paterson WR; Wilson DI
    J Agric Food Chem; 2006 Jul; 54(15):5437-44. PubMed ID: 16848529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling and dissolution of beta-lactoglobulin gels in alkali.
    Mercadé-Prieto R; Falconer RJ; Paterson WR; Wilson DI
    Biomacromolecules; 2007 Feb; 8(2):469-76. PubMed ID: 17243763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sulphate, chloride, and thiocyanate salts on formation of β-lactoglobulin-pectin microgels.
    Hirt S; Jones OG; Adijanto M; Gilbert J
    Food Chem; 2014 Dec; 164():63-9. PubMed ID: 24996306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat-induced changes in the ultrasonic properties of whey proteins.
    Corredig M; Verespej E; Dalgleish DG
    J Agric Food Chem; 2004 Jul; 52(14):4465-71. PubMed ID: 15237953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelling properties of heat-denatured beta-lactoglobulin aggregates in a high-salt buffer.
    Vittayanont M; Steffe JF; Flegler SL; Smith DM
    J Agric Food Chem; 2002 May; 50(10):2987-92. PubMed ID: 11982430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.