BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 142008)

  • 1. Inhibition of Na,K-ATPase from chick brain by polyamines.
    Heinrich-Hirsch B; Ahlers J; Peter HW
    Enzyme; 1977; 22(4):235-41. PubMed ID: 142008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae).
    Silva EC; Masui DC; Furriel RP; Mantelatto FL; McNamara JC; Barrabin H; Leone FA; Scofano HM; Fontes CF
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Apr; 149(4):622-9. PubMed ID: 18272416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polyamines on mitochondrial F-ATPase from Crithidia fasciculata and Trypanosoma cruzi.
    Rilo MC; Stoppani AO
    Biochem Mol Biol Int; 1993 Jan; 29(1):131-9. PubMed ID: 8490559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na⁺,K⁺-ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): modulation of ATP hydrolysis by the biogenic amines spermidine and spermine.
    Garçon DP; Lucena MN; França JL; McNamara JC; Fontes CF; Leone FA
    J Membr Biol; 2011 Nov; 244(1):9-20. PubMed ID: 21972069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamines regulate phosphorylation-dephosphorylation kinetics in a crustacean gill (Na
    Lucena MN; Garçon DP; Fontes CF; McNamara JC; Leone FA
    Mol Cell Biochem; 2017 May; 429(1-2):187-198. PubMed ID: 28190171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Na(+)-dependent and the Na(+)-independent polyamine transporters in renal epithelial cells (LLC-PK1).
    Parys JB; De Smedt H; Van Den Bosch L; Geuns J; Borghgraef R
    J Cell Physiol; 1990 Sep; 144(3):365-75. PubMed ID: 2118145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamines do not inhibit erythrocyte ATPase activities.
    Ballas SK; Clark MR; Mohandas N; Shohet SB
    Clin Chim Acta; 1983 Apr; 129(3):287-93. PubMed ID: 6303631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of polyamines in the synthesis of RNA in mycobacteria.
    Jain A; Tyagi AK
    Mol Cell Biochem; 1987 Nov; 78(1):3-8. PubMed ID: 2457796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the F-ATPase from mitochondria of Vigna sinensis (L.) Savi cv. Pitiuba by spermine, spermidine, putrescine, Mg2+, Na+, and K+.
    Peter HW; Pinheiro MR; Silva Lima M
    Can J Biochem; 1981 Jan; 59(1):60-6. PubMed ID: 6452941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of the natural polyamines putrescine, spermidine and spermine.
    Raina A; Jänne J
    Med Biol; 1975 Jun; 53(3):121-47. PubMed ID: 169440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Na-K activated ATPase in rat brain by catecholamine.
    Yoshimura K
    J Biochem; 1973 Aug; 74(2):389-91. PubMed ID: 4357458
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of a polyamine analogue, 1,19-bis-(ethylamino)-5,10,15- triazanonadecane (BE-4-4-4-4), with DNA and effect on growth, survival, and polyamine levels in seven human brain tumor cell lines.
    Basu HS; Pellarin M; Feuerstein BG; Shirahata A; Samejima K; Deen DF; Marton LJ
    Cancer Res; 1993 Sep; 53(17):3948-55. PubMed ID: 8358722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ornithine decarboxylase and polyamines in tissues of the neonatal rat: effects of alpha-difluoromethylornithine, a specific, irreversible inhibitor of ornithine decarboxylase.
    Slotkin TA; Seidler FJ; Trepanier PA; Whitmore WL; Lerea L; Barnes GA; Weigel SJ; Bartolome J
    J Pharmacol Exp Ther; 1982 Sep; 222(3):741-5. PubMed ID: 6809932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a polyamine transport system in murine embryonic palate mesenchymal cells.
    Gawel-Thompson K; Greene RM
    J Cell Physiol; 1988 Aug; 136(2):237-46. PubMed ID: 3137232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamines secreted by cancer cells possibly account for the impairment of the human erythrocyte sodium pump activity.
    Villano PJ; Gallice PM; Nicoara AE; Honore SG; Owczarczak K; Favre RG; Briand CM
    Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):305-12. PubMed ID: 11355005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of polyamines on protein kinases activities from Trypanosoma cruzi.
    Walter RD; Ebert F
    Tropenmed Parasitol; 1979 Mar; 30(1):9-12. PubMed ID: 375514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aliphatic polyamines in physiology and diseases.
    Ramani D; De Bandt JP; Cynober L
    Clin Nutr; 2014 Feb; 33(1):14-22. PubMed ID: 24144912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diversity of Na(+)-independent uptake systems for polyamines in rat intestinal brush-border membrane vesicles.
    Kobayashi M; Iseki K; Sugawara M; Miyazaki K
    Biochim Biophys Acta; 1993 Sep; 1151(2):161-7. PubMed ID: 8373792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Isolation of active preparation of Na+, K+-ATPase from cattle brain and study of the role of carboxyl, sulfhydryl and hydroxyl groups].
    Zilmer MK; Tarve US
    Ukr Biokhim Zh; 1975; 47(4):458-64. PubMed ID: 128866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.