These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1420145)

  • 1. Relationships between secondary structure fractions for globular proteins. Neural network analyses of crystallographic data sets.
    Pancoska P; Blazek M; Keiderling TA
    Biochemistry; 1992 Oct; 31(42):10250-7. PubMed ID: 1420145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analyses of the vibrational circular dichroism of selected proteins and relationship to secondary structures.
    Pancoska P; Yasui SC; Keiderling TA
    Biochemistry; 1991 May; 30(20):5089-103. PubMed ID: 2036376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy.
    Sreerama N; Venyaminov SY; Woody RW
    Protein Sci; 1999 Feb; 8(2):370-80. PubMed ID: 10048330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of secondary structure of globular proteins using circular dichroism spectra].
    Shubin VV; Khazin ML; Efimovskaia TV
    Mol Biol (Mosk); 1990; 24(1):189-201. PubMed ID: 2348821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(pro)II helices in globular proteins: identification and circular dichroic analysis.
    Sreerama N; Woody RW
    Biochemistry; 1994 Aug; 33(33):10022-5. PubMed ID: 8060970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of and limits of accuracy for statistical analyses of vibrational and electronic circular dichroism spectra in terms of correlations to and predictions of protein secondary structure.
    Pancoska P; Bitto E; Janota V; Urbanova M; Gupta VP; Keiderling TA
    Protein Sci; 1995 Jul; 4(7):1384-401. PubMed ID: 7670380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O.
    Baumruk V; Pancoska P; Keiderling TA
    J Mol Biol; 1996 Jun; 259(4):774-91. PubMed ID: 8683582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra.
    Pancoska P; Janota V; Keiderling TA
    Anal Biochem; 1999 Feb; 267(1):72-83. PubMed ID: 9918657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of an FTIR calibration curve for fast and objective determination of changes in protein secondary structure during formulation development.
    Vonhoff S; Condliffe J; Schiffter H
    J Pharm Biomed Anal; 2010 Jan; 51(1):39-45. PubMed ID: 19726151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of globular protein secondary structure from circular dichroism.
    Provencher SW; Glöckner J
    Biochemistry; 1981 Jan; 20(1):33-7. PubMed ID: 7470476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some problems of CD analyses of protein conformation.
    Venyaminov SYu ; Baikalov IA; Wu CS; Yang JT
    Anal Biochem; 1991 Nov; 198(2):250-5. PubMed ID: 1799208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein secondary structure from circular dichroism spectra: an attempt to solve the problem of the best-fitting reference protein subsets.
    Dalmas B; Bannister WH
    Anal Biochem; 1995 Feb; 225(1):39-48. PubMed ID: 7778785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of the global secondary structure of globular proteins by FTIR spectroscopy: Comparison with X-ray crystallographic structure.
    Kumosinski TF; Unruh JJ
    Talanta; 1996 Feb; 43(2):199-219. PubMed ID: 18966480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis.
    Garip S; Yapici E; Ozek NS; Severcan M; Severcan F
    Analyst; 2010 Dec; 135(12):3233-41. PubMed ID: 21038040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of protein far UV circular dichroism spectra by neural networks.
    Böhm G; Muhr R; Jaenicke R
    Protein Eng; 1992 Apr; 5(3):191-5. PubMed ID: 1409538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network.
    Matsuo K; Watanabe H; Gekko K
    Proteins; 2008 Oct; 73(1):104-12. PubMed ID: 18395813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra.
    Unneberg P; Merelo JJ; Chacón P; Morán F
    Proteins; 2001 Mar; 42(4):460-70. PubMed ID: 11170201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deconvolution of the circular dichroism spectra of proteins: the circular dichroism spectra of the antiparallel beta-sheet in proteins.
    Perczel A; Park K; Fasman GD
    Proteins; 1992 May; 13(1):57-69. PubMed ID: 1594578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.