These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 1420227)

  • 1. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo studies of an implantable energy convertor for skeletal muscle powered cardiac assist.
    Reichenbach SH; Farrar DJ; Diao E; Hill JD
    ASAIO J; 1997; 43(5):M668-72. PubMed ID: 9360130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical advantage of skeletal muscle as a cardiac assist power source.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1995; 41(3):M481-4. PubMed ID: 8573851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo performance of a muscle-powered drive system for implantable blood pumps.
    Trumble DR; Melvin DB; Dean DA; Magovern JA
    ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Left ventricular assistance in dogs using a skeletal muscle powered device for diastolic augmentation.
    Neilson IR; Brister SJ; Khalafalla AS; Chiu RC
    J Heart Transplant; 1985 May; 4(3):343-7. PubMed ID: 2956394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential mechanisms for muscle-powered cardiac support.
    Trumble DR
    Artif Organs; 2011 Jul; 35(7):715-20. PubMed ID: 21599720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle powered blood pump: design and initial test results.
    Trumble DR; Magovern JA
    ASAIO J; 1999; 45(3):178-82. PubMed ID: 10360719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power generation from four skeletal muscle configurations. Design implications for a muscle powered cardiac assist device.
    Badhwar V; Badhwar RK; Oh JH; Chiu RC
    ASAIO J; 1997; 43(5):M651-7. PubMed ID: 9360126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Output power and metabolic input power of skeletal muscle contracting linearly to compress a pouch in a mock circulatory system.
    Geddes LA; Badylak SF; Tacker WA; Janas W
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1435-42. PubMed ID: 1434727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurements of skeletal muscle in a linear configuration powering a hydraulically actuated VAD.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1994; 40(3):M309-13. PubMed ID: 8555530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Skeletal muscle ventricle used for right ventricle assistance].
    Watanabe G; Iwa T; Misaki T; Mukai A; Tsubota M; Otake Y
    Nihon Geka Gakkai Zasshi; 1989 Jul; 90(7):1065-71. PubMed ID: 2796973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing in situ skeletal muscle power for circulatory support: a new approach to device design.
    Trumble DR; Magovern JA
    ASAIO J; 2003; 49(4):480-5. PubMed ID: 12918595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can noncardiac muscle provide useful cardiac assistance? Preliminary studies of the properties of skeletal muscle.
    Stevens L; Brown J
    Am Surg; 1986 Aug; 52(8):423-7. PubMed ID: 2942069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implantable left ventricular assist device. Approaching an alternative for end-stage heart failure. Implantable LVAD Study Group.
    McCarthy PM; James KB; Savage RM; Vargo R; Kendall K; Harasaki H; Hobbs RE; Pashkow FJ
    Circulation; 1994 Nov; 90(5 Pt 2):II83-6. PubMed ID: 7955290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple electrical model of the circulation to explore design parameters for a skeletal muscle ventricle.
    Voytik SL; Babbs CF; Badylak SF
    J Heart Transplant; 1990; 9(2):160-74. PubMed ID: 2319376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic implantation of a skeletal muscle energy convertor for cardiac assist devices: a preliminary report.
    Reichenbach SH; Gustafson KJ; Khazalpour KM; Farrar DJ; Hill JD
    ASAIO J; 1998; 44(5):M745-9. PubMed ID: 9804536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compressive type skeletal muscle pump as a biomechanical energy source.
    Mizuhara H; Oda T; Koshiji T; Ikeda T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1996; 42(5):M637-41. PubMed ID: 8944958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic pouches of canine latissimus dorsi. Potential for left ventricular assistance.
    Mannion JD; Hammond R; Stephenson LW
    J Thorac Cardiovasc Surg; 1986 Apr; 91(4):534-44. PubMed ID: 3959572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preoperative predictors of survival in patients with Thoratec ventricular assist devices as a bridge to heart transplantation. Thoratec Ventricular Assist Device Principal Investigators.
    Farrar DJ
    J Heart Lung Transplant; 1994; 13(1 Pt 1):93-100; discussion 100-1. PubMed ID: 8167132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.