These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1420253)
81. Orientation of the glucose transporter in the human erythrocyte membrane. Investigation by in situ proteolytic dissection. Shanahan MF; D'Artel-Ellis J J Biol Chem; 1984 Nov; 259(22):13878-84. PubMed ID: 6150039 [TBL] [Abstract][Full Text] [Related]
82. Tyrosine sulfation site is located in the C-terminal fibrin-binding domain in secreted fibronectin from rat embryo fibroblasts, line 3Y1. Liu MC; Suiko M Arch Biochem Biophys; 1987 May; 255(1):162-7. PubMed ID: 3592656 [TBL] [Abstract][Full Text] [Related]
83. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. Fabry M; Schaefer E; Ellis L; Kojro E; Fahrenholz F; Brandenburg D J Biol Chem; 1992 May; 267(13):8950-6. PubMed ID: 1577732 [TBL] [Abstract][Full Text] [Related]
84. A proteolytic 140-kDa fragment of neurite outgrowth factor and its cell-binding activity. Hayashi Y; Taniura H; Miki N Neurosci Lett; 1987 Aug; 79(3):321-5. PubMed ID: 3658223 [TBL] [Abstract][Full Text] [Related]
85. Photochemical identification of transmembrane segment IVS6 as the binding region of semotiadil, a new modulator for the L-type voltage-dependent Ca2+ channel. Kuniyasu A; Itagaki K; Shibano T; Iino M; Kraft G; Schwartz A; Nakayama H J Biol Chem; 1998 Feb; 273(8):4635-41. PubMed ID: 9468522 [TBL] [Abstract][Full Text] [Related]
86. Biotin-conjugated reagents as site-specific probes of membrane protein structure: application to the study of the human erythrocyte hexose transporter. Deziel MR; Mau MM Anal Biochem; 1990 Nov; 190(2):297-303. PubMed ID: 2127160 [TBL] [Abstract][Full Text] [Related]
87. Immobilization of active facilitated glucose transporters (GLUT-1) in supported biological membranes. Neumann-Spallart C; Pittner F; Schalkhammer T Appl Biochem Biotechnol; 1997 Dec; 68(3):153-69. PubMed ID: 9429298 [TBL] [Abstract][Full Text] [Related]
88. Cell-surface recognition of biotinylated membrane proteins requires very long spacer arms: an example from glucose-transporter probes. Hashimoto M; Yang J; Holman GD Chembiochem; 2001 Jan; 2(1):52-9. PubMed ID: 11828427 [TBL] [Abstract][Full Text] [Related]
89. On the analogy between forskolin and D-glucose. Abbadi M; Morin C Bioorg Med Chem Lett; 1999 Jul; 9(13):1779-82. PubMed ID: 10406641 [TBL] [Abstract][Full Text] [Related]
90. Evidence for two extracellular domains in the human interleukin-2 receptor: localization of IL-2 binding. Shackelford DA; Trowbridge IS EMBO J; 1986 Dec; 5(12):3275-80. PubMed ID: 3102228 [TBL] [Abstract][Full Text] [Related]
91. Characterization of high affinity progesterone-binding membrane proteins by anti-peptide antiserum. Meyer C; Schmid R; Schmieding K; Falkenstein E; Wehling M Steroids; 1998 Feb; 63(2):111-6. PubMed ID: 9516722 [TBL] [Abstract][Full Text] [Related]
92. Forskolin photoaffinity probes for the evaluation of tubulin binding sites. Chavan AJ; Richardson SK; Kim H; Haley BE; Watt DS Bioconjug Chem; 1993; 4(4):268-74. PubMed ID: 8218483 [No Abstract] [Full Text] [Related]
93. Molecular cloning of the bovine blood-brain barrier glucose transporter cDNA and demonstration of phylogenetic conservation of the 5'-untranslated region. Boado RJ; Pardridge WM Mol Cell Neurosci; 1990 Dec; 1(3):224-32. PubMed ID: 19912773 [TBL] [Abstract][Full Text] [Related]
94. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions. Jhun E; Jhun BH; Jones LR; Jung CY J Biol Chem; 1991 May; 266(15):9403-7. PubMed ID: 2033040 [TBL] [Abstract][Full Text] [Related]
95. A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Wang J; Wang Z; Yu J; Zhang Y; Zeng Y; Gu Z Biomater Sci; 2019 Nov; 7(11):4508-4513. PubMed ID: 31608343 [TBL] [Abstract][Full Text] [Related]
96. Is there an optimal dose for dietary linoleic acid? Lessons from essential fatty acid deficiency supplementation and adipocyte functions in rats. Harant-Farrugia I; Garcia J; Iglesias-Osma MC; Garcia-Barrado MJ; Carpéné C J Physiol Biochem; 2014 Jun; 70(2):615-27. PubMed ID: 24488489 [TBL] [Abstract][Full Text] [Related]
97. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Kluth O; Mirhashemi F; Scherneck S; Kaiser D; Kluge R; Neschen S; Joost HG; Schürmann A Diabetologia; 2011 Mar; 54(3):605-16. PubMed ID: 21107520 [TBL] [Abstract][Full Text] [Related]
98. High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain. Mirhashemi F; Kluth O; Scherneck S; Vogel H; Kluge R; Schurmann A; Joost HG; Neschen S Obes Facts; 2008; 1(6):292-7. PubMed ID: 20054191 [TBL] [Abstract][Full Text] [Related]
99. Essential role of glucose transporter GLUT3 for post-implantation embryonic development. Schmidt S; Hommel A; Gawlik V; Augustin R; Junicke N; Florian S; Richter M; Walther DJ; Montag D; Joost HG; Schürmann A J Endocrinol; 2009 Jan; 200(1):23-33. PubMed ID: 18948350 [TBL] [Abstract][Full Text] [Related]
100. Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Jürgens HS; Neschen S; Ortmann S; Scherneck S; Schmolz K; Schüler G; Schmidt S; Blüher M; Klaus S; Perez-Tilve D; Tschöp MH; Schürmann A; Joost HG Diabetologia; 2007 Jul; 50(7):1481-9. PubMed ID: 17437079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]