These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 142083)

  • 1. Membrane-bound adenosine triphosphatase of Escherichia coli. III. Effects of sodium azide on the enzyme functions.
    Kobayashi H; Maeda M; Anraku Y
    J Biochem; 1977 Apr; 81(4):1071-7. PubMed ID: 142083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities.
    Carreira J; Muñoz E
    Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diphenyl phosphorazidate: a new potent organic azide inhibiting energy transformation reactions.
    Kin E; Anraku Y
    J Biochem; 1974 Sep; 76(3):667-9. PubMed ID: 4279912
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Bacteriol; 1976 Jul; 127(1):154-61. PubMed ID: 6430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane adenosine triphosphatase of Escherichia coli: activation by calcium ion and inhibition by monovalent cations.
    Evans DJ
    J Bacteriol; 1969 Nov; 100(2):914-22. PubMed ID: 4242923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction.
    Roisin MP; Kepes A
    Biochim Biophys Acta; 1972 Sep; 275(3):333-46. PubMed ID: 4262689
    [No Abstract]   [Full Text] [Related]  

  • 9. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus.
    van der Drift C; Janssen DB; van Wezenbeek PM
    Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii.
    Heise R; Müller V; Gottschalk G
    Eur J Biochem; 1992 Jun; 206(2):553-7. PubMed ID: 1534543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode of inhibition of sodium azide on H+-ATPase of Escherichia coli.
    Noumi T; Maeda M; Futai M
    FEBS Lett; 1987 Mar; 213(2):381-4. PubMed ID: 2881810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-transducing adenosine triphosphatase from Escherichia coli: purification, properties, and inhibition by antibody.
    Hanson RL; Kennedy EP
    J Bacteriol; 1973 May; 114(2):772-81. PubMed ID: 4267535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of uncoupler-stimulated adenosine triphosphatase activity in yeast mitochondria.
    Ezzahid Z; Rigoulet M; Guérin B
    J Gen Microbiol; 1986 May; 132(5):1153-8. PubMed ID: 2945901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of sugars and amino acids in bacteria. XIV. Preferential inhibition of oxidase activities and active transport reactions for amino acids by azidebenzenes.
    Kin E; Anraku Y
    J Biochem; 1975 Jul; 78(1):159-63. PubMed ID: 127788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo studies of the role of SecA during protein export in Escherichia coli.
    Chun SY; Randall LL
    J Bacteriol; 1994 Jul; 176(14):4197-203. PubMed ID: 8021205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the plasma membrane ATPase of Candida tropicalis.
    Blasco F; Chapuis JP; Giordani R
    Biochimie; 1981 Jun; 63(6):507-14. PubMed ID: 6455165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase.
    Altendorf K; Harold FM; Simoni RD
    J Biol Chem; 1974 Jul; 249(14):4587-93. PubMed ID: 4276462
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functionally inactive, cold-stabilized form of the Escherichia coli F1Fo ATP synthase.
    Galkin MA; Ishmukhametov RR; Vik SB
    Biochim Biophys Acta; 2006 Mar; 1757(3):206-14. PubMed ID: 16581013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.