These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1420873)

  • 1. Folding kinetics of designer proteins. Application of the diffusion-collision model to a de novo designed four-helix bundle.
    Yapa KK; Weaver DL
    Biophys J; 1992 Jul; 63(1):296-9. PubMed ID: 1420873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the diffusion-collision model to the folding of three-helix bundle proteins.
    Islam SA; Karplus M; Weaver DL
    J Mol Biol; 2002 Apr; 318(1):199-215. PubMed ID: 12054779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulations of de novo designed helical proteins.
    Sikorski A; Kolinski A; Skolnick J
    Biophys J; 1998 Jul; 75(1):92-105. PubMed ID: 9649370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering.
    Høiberg-Nielsen R; Tofteng Shelton AP; Sørensen KK; Roessle M; Svergun DI; Thulstrup PW; Jensen KJ; Arleth L
    Chembiochem; 2008 Nov; 9(16):2663-72. PubMed ID: 18850602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of sequence and structure in protein folding kinetics; the diffusion-collision model applied to proteins L and G.
    Islam SA; Karplus M; Weaver DL
    Structure; 2004 Oct; 12(10):1833-45. PubMed ID: 15458632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-collision model study of misfolding in a four-helix bundle protein.
    Beck C; Siemens X; Weaver DL
    Biophys J; 2001 Dec; 81(6):3105-15. PubMed ID: 11720978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-collision model for the folding kinetics of the lambda-repressor operator-binding domain.
    Bashford D; Weaver DL; Karplus M
    J Biomol Struct Dyn; 1984 Mar; 1(5):1243-55. PubMed ID: 6400820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and thermodynamics of folding of a de novo designed four-helix bundle protein.
    Guo Z; Thirumalai D
    J Mol Biol; 1996 Oct; 263(2):323-43. PubMed ID: 8913310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992.
    Richardson JS; Richardson DC; Tweedy NB; Gernert KM; Quinn TP; Hecht MH; Erickson BW; Yan Y; McClain RD; Donlan ME
    Biophys J; 1992 Nov; 63(5):1185-209. PubMed ID: 1477272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast folding of alpha3D: a de novo designed three-helix bundle protein.
    Zhu Y; Alonso DO; Maki K; Huang CY; Lahr SJ; Daggett V; Roder H; DeGrado WF; Gai F
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15486-91. PubMed ID: 14671331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude.
    Munson M; Anderson KS; Regan L
    Fold Des; 1997; 2(1):77-87. PubMed ID: 9080201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein folding: simple models for a complex process.
    Caflisch A
    Structure; 2004 Oct; 12(10):1750-2. PubMed ID: 15458624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusive model of protein folding dynamics with Kramers turnover in rate.
    Best RB; Hummer G
    Phys Rev Lett; 2006 Jun; 96(22):228104. PubMed ID: 16803349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of the properties of the alpha2, alpha2C, and alpha2D de novo designed helical proteins.
    Sikorski A; Kolinski A; Skolnick J
    Proteins; 2000 Jan; 38(1):17-28. PubMed ID: 10651035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-consistent knowledge-based approach to protein design.
    Rossi A; Micheletti C; Seno F; Maritan A
    Biophys J; 2001 Jan; 80(1):480-90. PubMed ID: 11159418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic.
    Murphy GS; Greisman JB; Hecht MH
    J Mol Biol; 2016 Jan; 428(2 Pt A):399-411. PubMed ID: 26707197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-collision model for the folding kinetics of myoglobin.
    Bashford D; Cohen FE; Karplus M; Kuntz ID; Weaver DL
    Proteins; 1988; 4(3):211-27. PubMed ID: 3237719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model.
    Mirny LA; Abkevich V; Shakhnovich EI
    Fold Des; 1996; 1(2):103-16. PubMed ID: 9079370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.