These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1420905)

  • 1. Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator.
    Gryczynski Z; Tenenholz T; Bucci E
    Biophys J; 1992 Sep; 63(3):648-53. PubMed ID: 1420905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of disordered hemes on energy transfer rates between tryptophans and heme in myoglobin.
    Gryczynski Z; Fronticelli C; Tenenholz T; Bucci E
    Biophys J; 1993 Nov; 65(5):1951-8. PubMed ID: 8298024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins.
    Gryczynski Z; Bucci E; Kuśba J
    Photochem Photobiol; 1993 Oct; 58(4):492-8. PubMed ID: 8248322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence properties of tryptophan residues in the monomeric d-chain of Glossoscolex paulistus hemoglobin: an interpretation based on a comparative molecular model.
    Bosch Cabral C; Imasato H; Rosa JC; Laure HJ; da Silva CH; Tabak M; Garratt RC; Greene LJ
    Biophys Chem; 2002 Jun; 97(2-3):139-57. PubMed ID: 12050006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of tryptophan fluorescence properties upon dissociation of Lumbricus terrestris hemoglobin.
    Hirsch RE; Vidugiris GJ; Friedman JM; Harrington JP
    Biochim Biophys Acta; 1994 Apr; 1205(2):248-51. PubMed ID: 8155704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants.
    Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y
    Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan fluorescence lifetimes in lysozyme.
    Formoso C; Forster LS
    J Biol Chem; 1975 May; 250(10):3738-45. PubMed ID: 236300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme-CO binding to tryptophan-containing calmodulin mutants.
    Leclerc L'Hostis E; Leclerc L; Haiech J; Poyart C; Marden MC
    Biochim Biophys Acta; 1996 Oct; 1313(3):209-16. PubMed ID: 8898856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond fluorescence decay of tryptophans in myoglobin.
    Hochstrasser RM; Negus DK
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4399-403. PubMed ID: 6589602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer.
    Franzen S; Kiger L; Poyart C; Martin JL
    Biophys J; 2001 May; 80(5):2372-85. PubMed ID: 11325737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigidity of the heme pocket in the cooperative Scapharca hemoglobin homodimer and relation to the direct communication between hemes.
    Ilari A; Boffi A; Chiancone E
    Arch Biochem Biophys; 1995 Jan; 316(1):378-84. PubMed ID: 7840639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the heme iron in pyridoxylated hemoglobin cross-linked by glutaraldehyde using Mössbauer spectroscopy.
    Oshtrakh MI; Milder OB; Semionkin VA; Berkovsky AL; Azhigirova MA; Vyazova EP
    Int J Biol Macromol; 2000 Oct; 28(1):51-8. PubMed ID: 11033177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence and energy transfer of tryptophans in Aplysia myoglobin.
    Janes SM; Holtom G; Ascenzi P; Brunori M; Hochstrasser RM
    Biophys J; 1987 Apr; 51(4):653-60. PubMed ID: 3580491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme-heme interactions in tetramers and dimers of hemoglobin subunits: DeVoe theory calculations.
    Woody RW
    Chirality; 2005 Oct; 17(8):450-5. PubMed ID: 16096988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: orientation of the chlorophyll S1 transition dipole.
    Moog RS; Kuki A; Fayer MD; Boxer SG
    Biochemistry; 1984 Mar; 23(7):1564-71. PubMed ID: 6722108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytosol-membrane interface of human erythrocytes. A resonance energy transfer study.
    Eisinger J; Flores J
    Biophys J; 1983 Mar; 41(3):367-79. PubMed ID: 6838975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent specific volume of human hemoglobin: effect of ligand state and contribution of heme.
    DeMoll E; Cox DJ; Daniel E; Riggs AF
    Anal Biochem; 2007 Apr; 363(2):196-203. PubMed ID: 17331460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast dynamics of resonance energy transfer in myoglobin: probing local conformation fluctuations.
    Stevens JA; Link JJ; Kao YT; Zang C; Wang L; Zhong D
    J Phys Chem B; 2010 Jan; 114(3):1498-505. PubMed ID: 20047308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.