BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1420906)

  • 21. Coupling of ferric iron spin and allosteric equilibrium in hemoglobin.
    Marden MC; Kiger L; Kister J; Bohn B; Poyart C
    Biophys J; 1991 Oct; 60(4):770-6. PubMed ID: 1742452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coexpression of human alpha- and circularly permuted beta-globins yields a hemoglobin with normal R state but modified T state properties.
    Asmundson AL; Taber AM; van der Walde A; Lin DH; Olson JS; Anthony-Cahill SJ
    Biochemistry; 2009 Jun; 48(23):5456-65. PubMed ID: 19397368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations of the betaN102 residue of HbA not only inhibit the ligand-linked T to Re state transition, but also profoundly affect the properties of the T state itself.
    Kwiatkowski LD; Hui HL; Karasik E; Colby JE; Noble RW
    Biochemistry; 2007 Feb; 46(7):2037-49. PubMed ID: 17253771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can a two-state MWC allosteric model explain hemoglobin kinetics?
    Henry ER; Jones CM; Hofrichter J; Eaton WA
    Biochemistry; 1997 May; 36(21):6511-28. PubMed ID: 9174369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin.
    Sawicki CA; Gibson QH
    J Biol Chem; 1976 Mar; 251(6):1533-42. PubMed ID: 3499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand binding kinetic studies on the hybrid hemoglobin alpha(carp):beta(human): a hemoglobin with a restricted allosteric range.
    Goss DJ; Parkhurst LJ
    Biochemistry; 1984 May; 23(10):2174-9. PubMed ID: 6733080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The 1.9 A structure of deoxy beta 4 hemoglobin. Analysis of the partitioning of quaternary-associated and ligand-induced changes in tertiary structure.
    Borgstahl GE; Rogers PH; Arnone A
    J Mol Biol; 1994 Feb; 236(3):831-43. PubMed ID: 8114097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allosteric kinetics and equilibria of triligated, cross-linked hemoglobin.
    Zhao M; Jiang J; Greene M; Andracki ME; Fowler SA; Walder JA; Ferrone FA
    Biophys J; 1993 May; 64(5):1520-32. PubMed ID: 8324188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional and spectroscopic characterization of half-liganded iron-zinc hybrid hemoglobin: evidence for conformational plasticity within the T state.
    Samuni U; Juszczak L; Dantsker D; Khan I; Friedman AJ; Pérez-González-de-Apodaca J; Bruno S; Hui HL; Colby JE; Karasik E; Kwiatkowski LD; Mozzarelli A; Noble R; Friedman JM
    Biochemistry; 2003 Jul; 42(27):8272-88. PubMed ID: 12846576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of the triply oxidized derivative of a cross-linked hemoglobin.
    Fowler SA; Walder J; DeYoung A; Kwiatkowski LD; Noble RW
    Biochemistry; 1992 Jan; 31(3):717-25. PubMed ID: 1731928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flash photolytic studies of carbon monoxide binding to the ferrous chains of [Mn(II),Fe(II)] hybrid hemoglobins: kinetic mechanism for the early stages of hemoglobin ligation.
    Blough NV; Zemel H; Hoffman BM
    Biochemistry; 1984 Jun; 23(13):2883-91. PubMed ID: 6466623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dissociation of carbon monoxide from hemoglobin intermediate.
    Samaja M; Rovida E; Niggeler M; Perrella M; Rossi-Bernardi L
    J Biol Chem; 1987 Apr; 262(10):4528-33. PubMed ID: 3558353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing heme protein conformational equilibration rates with kinetic selection.
    Tian WD; Sage JT; Champion PM; Chien E; Sligar SG
    Biochemistry; 1996 Mar; 35(11):3487-502. PubMed ID: 8639499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand-induced tertiary relaxations during the T-to-R quaternary transition in hemoglobin.
    Ronda L; Abbruzzetti S; Bruno S; Bettati S; Mozzarelli A; Viappiani C
    J Phys Chem B; 2008 Oct; 112(40):12790-4. PubMed ID: 18783270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the hemoglobin switchpoint with cyanomet valency hybrids: Raman spectroscopic probes of tertiary and quaternary structure.
    Mukerji I; Spiro TG
    Biochemistry; 1994 Nov; 33(44):13132-9. PubMed ID: 7947719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon monoxide binding properties of hemoglobin M Iwate.
    Salhany JM; Castillo CL; Ogawa S
    Biochemistry; 1976 Nov; 15(24):5344-9. PubMed ID: 999810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double-mixing kinetic studies of the reactions of monoliganded species of hemoglobin: alpha 2(CO)1 beta 2 and alpha 2 beta 2(CO)1.
    Sharma VS; Bandyopadhyay D; Berjis M; Rifkind J; Boss GR
    J Biol Chem; 1991 Dec; 266(36):24492-7. PubMed ID: 1761549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanosecond step-scan FTIR spectroscopy of hemoglobin: ligand recombination and protein conformational changes.
    Hu X; Frei H; Spiro TG
    Biochemistry; 1996 Oct; 35(40):13001-5. PubMed ID: 8855934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.