BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1420991)

  • 1. Hydrophobicity scale for proteins based on inverse temperature transitions.
    Urry DW; Gowda DC; Parker TM; Luan CH; Reid MC; Harris CM; Pattanaik A; Harris RD
    Biopolymers; 1992 Sep; 32(9):1243-50. PubMed ID: 1420991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobicity-induced pK shifts in elastin protein-based polymers.
    Urry DW; Peng SQ; Parker TM
    Biopolymers; 1992 Apr; 32(4):373-9. PubMed ID: 1623133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobicity of amino acid residues: differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptide of elastin.
    Luan CH; Parker TM; Gowda DC; Urry DW
    Biopolymers; 1992 Sep; 32(9):1251-61. PubMed ID: 1420992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP.
    McPherson DT; Xu J; Urry DW
    Protein Expr Purif; 1996 Feb; 7(1):51-7. PubMed ID: 9172783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature.
    Kumar N; Shukla S; Kumar S; Suryawanshi A; Chaudhry U; Ramachandran S; Maiti S
    Proteins; 2008 May; 71(3):1123-33. PubMed ID: 18004752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of a partial folding reaction. 2. Nature of the transition state.
    Goldberg JM; Baldwin RL
    Biochemistry; 1998 Feb; 37(8):2556-63. PubMed ID: 9485405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of hydrophobic cluster formation through long-range contacts in the folding transition state of two-state proteins.
    Selvaraj S; Gromiha MM
    Proteins; 2004 Jun; 55(4):1023-35. PubMed ID: 15146499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing.
    Anil B; Sato S; Cho JH; Raleigh DP
    J Mol Biol; 2005 Dec; 354(3):693-705. PubMed ID: 16246369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native protein sequences are designed to destabilize folding intermediates.
    Isogai Y
    Biochemistry; 2006 Feb; 45(8):2488-92. PubMed ID: 16489741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential scanning calorimetry studies of the inverse temperature transition of the polypentapeptide of elastin and its analogues.
    Luan CH; Harris RD; Prasad KU; Urry DW
    Biopolymers; 1990 Dec; 29(14):1699-706. PubMed ID: 2207282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction-driven polypeptide folding by the delta Tt mechanism.
    Urry DW; Hayes LC; Gowda DC; Harris CM; Harris RD
    Biochem Biophys Res Commun; 1992 Oct; 188(2):611-7. PubMed ID: 1445305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering.
    Reiersen H; Clarke AR; Rees AR
    J Mol Biol; 1998; 283(1):255-64. PubMed ID: 9761688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular biophysics of elastin structure, function and pathology.
    Urry DW; Luan CH; Peng SQ
    Ciba Found Symp; 1995; 192():4-22; discussion 22-30. PubMed ID: 8575267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature and high-pressure induced swelling of a hydrophobic polymer-chain in aqueous solution.
    Paschek D; Nonn S; Geiger A
    Phys Chem Chem Phys; 2005 Jul; 7(14):2780-6. PubMed ID: 16189593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides.
    Li B; Daggett V
    Biopolymers; 2003 Jan; 68(1):121-9. PubMed ID: 12579584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer simulation study of water drying at the interface of protein chains.
    Huang Q; Ding S; Hua CY; Yang HC; Chen CL
    J Chem Phys; 2004 Jul; 121(4):1969-77. PubMed ID: 15260749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study.
    Nguyen PH; Stock G; Mittag E; Hu CK; Li MS
    Proteins; 2005 Dec; 61(4):795-808. PubMed ID: 16240446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical transduction: reduction-driven hydrophobic folding demonstrated in a model protein to perform mechanical work.
    Urry DW; Hayes LC; Gowda DC
    Biochem Biophys Res Commun; 1994 Oct; 204(1):230-7. PubMed ID: 7945365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanometric design of extraordinary hydrophobic-induced pKa shifts for aspartic acid: relevance to protein mechanisms.
    Urry DW; Gowda DC; Peng S; Parker TM; Jing N; Harris RD
    Biopolymers; 1994 Jul; 34(7):889-96. PubMed ID: 8054471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the mechanism of beta-hairpin folding via phi-value analysis.
    Du D; Tucker MJ; Gai F
    Biochemistry; 2006 Feb; 45(8):2668-78. PubMed ID: 16489760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.