These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1421083)

  • 1. Apomorphine disrupts odour-induced patterns of glomerular activation in the olfactory bulb.
    Sallaz M; Jourdan F
    Neuroreport; 1992 Oct; 3(10):833-6. PubMed ID: 1421083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Odour-induced c-fos expression in the rat olfactory bulb: involvement of centrifugal afferents.
    Sallaz M; Jourdan F
    Brain Res; 1996 May; 721(1-2):66-75. PubMed ID: 8793085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-fos expression and 2-deoxyglucose uptake in the olfactory bulb of odour-stimulated awake rats.
    Sallaz M; Jourdan F
    Neuroreport; 1993 Jan; 4(1):55-8. PubMed ID: 8453036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and discrimination of propionic acid after removal of its 2-DG identified major focus in the olfactory bulb: a psychophysical analysis.
    Slotnick BM; Bell GA; Panhuber H; Laing DG
    Brain Res; 1997 Jul; 762(1-2):89-96. PubMed ID: 9262162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apomorphine-haloperidol interactions: different types of antagonism in cortical and subcortical brain regions.
    Bacopoulos NG; Roth RH
    Brain Res; 1981 Feb; 205(2):313-9. PubMed ID: 7470869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study.
    Duchamp-Viret P; Coronas V; Delaleu JC; Moyse E; Duchamp A
    Neuroscience; 1997 Jul; 79(1):203-16. PubMed ID: 9178876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long hydrocarbon chains serve as unique molecular features recognized by ventral glomeruli of the rat olfactory bulb.
    Ho SL; Johnson BA; Leon M
    J Comp Neurol; 2006 Sep; 498(1):16-30. PubMed ID: 16856178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution of [14C]2-deoxyglucose uptake in the olfactory bulbs of rats stimulated with two different odours.
    Jourdan F; Duveau A; Astic L; Holley A
    Brain Res; 1980 Apr; 188(1):139-54. PubMed ID: 7370749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized changes in olfactory bulb morphology associated with early olfactory learning.
    Woo CC; Coopersmith R; Leon M
    J Comp Neurol; 1987 Sep; 263(1):113-25. PubMed ID: 3667967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of propionic acid vapor by rats with lesions of olfactory bulb areas associated with high 2-DG uptake.
    Slotnick BM; Graham S; Laing DG; Bell GA
    Brain Res; 1987 Aug; 417(2):343-6. PubMed ID: 3651818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labelling of olfactory bulb glomeruli following horseradish peroxidase lavage of the nasal cavity.
    Stewart WB
    Brain Res; 1985 Nov; 347(1):200-3. PubMed ID: 2413967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogenesis of the functional activity of rat olfactory bulb: autoradiographic study with the 2-deoxyglucose method.
    Astic L; Saucier D
    Brain Res; 1981 Sep; 254(2):243-56. PubMed ID: 7272779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic autoinhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle by in vivo electrochemistry.
    Suaud-Chagny MF; Ponec J; Gonon F
    Neuroscience; 1991; 45(3):641-52. PubMed ID: 1775239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of propionic acid vapor after removal of the olfactory bulb area associated with high 2-DG uptake.
    Lu XC; Slotnick BM
    Brain Res; 1994 Mar; 639(1):26-32. PubMed ID: 8180835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological correlates of stereotyped sniffing in rats injected with apomorphine.
    Vanderwolf CH; Szechtman H
    Pharmacol Biochem Behav; 1987 Feb; 26(2):299-304. PubMed ID: 3575354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic supersensitivity in striatum and olfactory tubercle following chronic administration of haloperidol or clozapine.
    Gianutsos G; Moore KE
    Life Sci; 1977 May; 20(9):1585-91. PubMed ID: 875633
    [No Abstract]   [Full Text] [Related]  

  • 17. Odor-induced metabolic activity in the olfactory bulb of rats trained to detect propionic acid vapor.
    Slotnick BM; Panhuber H; Bell GA; Laing DG
    Brain Res; 1989 Oct; 500(1-2):161-8. PubMed ID: 2605489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological-radioautographic approach.
    Coronas V; Krantic S; Jourdan F; Moyse E
    Neuroscience; 1999 Apr; 90(1):69-78. PubMed ID: 10188934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of [14C]2-deoxy-D-glucose incorporation into neostriatum and related structures in response to dopamine neuron damage and apomorphine replacement.
    Kozlowski MR; Marshall JF
    Brain Res; 1980 Sep; 197(1):167-83. PubMed ID: 7397550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological examination of the ventral tegmental (A10) area in the rat.
    German DC; Dalsass M; Kiser RS
    Brain Res; 1980 Jan; 181(1):191-7. PubMed ID: 7350954
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.