These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1421091)

  • 1. Bicommissural neurones in the cerebral cortex of developing hamsters.
    Hedin-Pereira C; Uziel D; Lent R
    Neuroreport; 1992 Oct; 3(10):873-6. PubMed ID: 1421091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of paleocortical projections through the anterior commissure of hamsters adopts progressive, not regressive, strategies.
    Lent R; Guimarães RZ
    J Neurobiol; 1991 Jul; 22(5):475-98. PubMed ID: 1890425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1998 Oct; 400(2):197-206. PubMed ID: 9766399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical target depletion and ingrowth of geniculocortical axons: implications for cortical specification.
    Woo TU; Finlay BL
    Cereb Cortex; 1996; 6(3):457-69. PubMed ID: 8670671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenesis and development of callosal and intracortical connections in the hamster.
    Lent R; Hedin-Pereira C; Menezes JR; Jhaveri S
    Neuroscience; 1990; 38(1):21-37. PubMed ID: 2175019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortico-cortical connections reorganize in hamsters after neonatal transection of the callosal bridge.
    Lent R
    Brain Res; 1983 Dec; 313(1):137-42. PubMed ID: 6198049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates.
    Schwartz ML; Goldman-Rakic PS
    Nature; 1982 Sep; 299(5879):154-5. PubMed ID: 7110334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure.
    Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC
    J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of callosal connections in the sensorimotor cortex of the hamster.
    Norris CR; Kalil K
    J Comp Neurol; 1992 Dec; 326(1):121-32. PubMed ID: 1479065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prenatal development of the anterior commissure in hamsters: pioneer fibers lead the way.
    Pires-Neto MA; Lent R
    Brain Res Dev Brain Res; 1993 Mar; 72(1):59-66. PubMed ID: 8453765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient axonal branching in the developing corpus callosum.
    Kadhim HJ; Bhide PG; Frost DO
    Cereb Cortex; 1993; 3(6):551-66. PubMed ID: 8136653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guidance of callosal axons by radial glia in the developing cerebral cortex.
    Norris CR; Kalil K
    J Neurosci; 1991 Nov; 11(11):3481-92. PubMed ID: 1941093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization, Development and Enucleation-induced Alterations in the Visual Callosal Projection of the Hamster: Single Axon Tracing with Phaseolus vulgaris leucoagglutinin and Di-I.
    Fish SE; Rhoades RW; Bennett-Clarke CA; Figley B; Mooney RD
    Eur J Neurosci; 1991; 3(12):1255-1270. PubMed ID: 12106224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the perforating pathway: an ipsilaterally projecting pathway between the medial septum/diagonal band of Broca and the cingulate cortex that intersects the corpus callosum.
    Shu T; Shen WB; Richards LJ
    J Comp Neurol; 2001 Aug; 436(4):411-22. PubMed ID: 11447586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal basic helix-loop-helix proteins Neurod2/6 regulate cortical commissure formation before midline interactions.
    Bormuth I; Yan K; Yonemasu T; Gummert M; Zhang M; Wichert S; Grishina O; Pieper A; Zhang W; Goebbels S; Tarabykin V; Nave KA; Schwab MH
    J Neurosci; 2013 Jan; 33(2):641-51. PubMed ID: 23303943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient cellular structures in developing corpus callosum of the human brain.
    Jovanov-Milosević N; Benjak V; Kostović I
    Coll Antropol; 2006 Jun; 30(2):375-81. PubMed ID: 16848154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neocortical and basal telencephalic origins of the anterior commissure of the cat.
    Jouandet ML
    Neuroscience; 1982 Jul; 7(7):1731-52. PubMed ID: 7121832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of prenatal gamma irradiation on the development of the corpus callosum of Swiss mice.
    Abreu-Villaça YY; Schmidt SL
    Int J Dev Neurosci; 1999 Nov; 17(7):693-704. PubMed ID: 10568686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axons from restricted regions of the cortex pass through restricted portions of the corpus callosum in adult and neonatal rats.
    Olavarria J; van Sluyters RC
    Brain Res; 1986 Mar; 390(2):309-13. PubMed ID: 3513903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.