These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 14213221)

  • 21. Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site.
    Rao GS; Coleman DE; Karsten WE; Cook PF; Harris BG
    J Biol Chem; 2003 Sep; 278(39):38051-8. PubMed ID: 12853453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies.
    Kiick DM; Harris BG; Cook PF
    Biochemistry; 1986 Jan; 25(1):227-36. PubMed ID: 3513825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [DEMONSTRATION OF 2 MALATE SYNTHASES IN ESCHERICHIA COLI].
    FALMAGNE P; VANDERWINKEL E; WIAME JM
    Biochim Biophys Acta; 1965 May; 99():246-58. PubMed ID: 14336062
    [No Abstract]   [Full Text] [Related]  

  • 24. Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis.
    Karsten WE; Chooback L; Liu D; Hwang CC; Lynch C; Cook PF
    Biochemistry; 1999 Aug; 38(32):10527-32. PubMed ID: 10441149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate.
    Gavva SR; Harris BG; Weiss PM; Cook PF
    Biochemistry; 1991 Jun; 30(23):5764-9. PubMed ID: 2043616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NADH→NAD⁺ Transhydrogenation in Adult Ascaris suum Mitochondria.
    Holowiecki A; Fioravanti CF
    J Parasitol; 2015 Jun; 101(3):358-63. PubMed ID: 25587625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. THE INHIBITION OF MALIC ENZYME OF LACTOBACILLUS ARABINOSUS 17-5 BY OLEIC ACID. I. OBSERVATIONS ON THE REACTION.
    COLES RS; LICHSTEIN HC
    Arch Biochem Biophys; 1963 Nov; 103():186-90. PubMed ID: 14084580
    [No Abstract]   [Full Text] [Related]  

  • 28. Purification of malic enzyme from Ascaris suum using NAD+-agarose.
    Allen BL; Harris BG
    Mol Biochem Parasitol; 1981 Apr; 2(5-6):367-72. PubMed ID: 7242572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and isotope partitioning studies on the NAD+-malic enzyme from Ascaris suum.
    Landsperger WJ; Fodge DW; Harris BG
    J Biol Chem; 1978 Mar; 253(6):1868-73. PubMed ID: 204633
    [No Abstract]   [Full Text] [Related]  

  • 30. Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism.
    Chen CY; Harris BG; Cook PF
    Biochemistry; 1988 Jan; 27(1):212-9. PubMed ID: 3280016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [On the reduction of L-malic acid by lactic acid bacteria. I. On malate reducing enzymes of bacterium "L" with special attention to oxalacetate decarboxylase].
    Flesch P; Holbach B
    Arch Mikrobiol; 1965 Aug; 51(4):401-13. PubMed ID: 4287158
    [No Abstract]   [Full Text] [Related]  

  • 32. Crystallization of the NAD-dependent malic enzyme from the parasitic nematode Ascaris suum.
    Clancy LL; Rao GS; Finzel BC; Muchmore SW; Holland DR; Watenpaugh KD; Krishnamurthy HM; Sweet RM; Cook PF; Harris BG
    J Mol Biol; 1992 Jul; 226(2):565-9. PubMed ID: 1640469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [On the physiological basis of the rhythmic muscle activity of Ascaris suum Goeze].
    MIKHAILOVA P
    C R Acad Bulg Sci; 1962; 15():415-8. PubMed ID: 13935754
    [No Abstract]   [Full Text] [Related]  

  • 34. GONADOTROPIN REGULATION OF THE ACTIVITIES OF DEHYDROGENASE ENZYMES OF THE OVARY.
    MCKERNS KW
    Biochim Biophys Acta; 1965 Mar; 97():542-50. PubMed ID: 14328656
    [No Abstract]   [Full Text] [Related]  

  • 35. Malate dehydrogenase in Ascaris suum: characterization, ontogeny, and genetic control.
    Zee DS; Zinkham WH
    Arch Biochem Biophys; 1968 Aug; 126(2):574-84. PubMed ID: 5672517
    [No Abstract]   [Full Text] [Related]  

  • 36. [EFFECT OF GIBBERELIN ON THE EMBRYONAL DEVELOPMENT OF ASCARIS SUUM].
    GORIACHEV PP
    Med Parazitol (Mosk); 1964; 33():297-300. PubMed ID: 14219162
    [No Abstract]   [Full Text] [Related]  

  • 37. [EFFECT OF THE PREPARATION "VAPAM" ON ASCARIS LUMBRICOIDES AND ASCARIS SUUM EGGS IN VITRO].
    NASILOWSKA M
    Wiad Parazytol; 1963; 9():143-5. PubMed ID: 14051080
    [No Abstract]   [Full Text] [Related]  

  • 38. THE COMPARATIVE BIOCHEMISTRY OF DEVELOPING ASCARIS EGGS. I. SUBSTRATE OXIDATION AND THE CYTOCHROME SYSTEM IN EMBRYONATED AND UNEMBRYONATED EGGS.
    COSTELLO LC; SMITH W; OYA H
    Arch Biochem Biophys; 1963 Dec; 103():345-51. PubMed ID: 14099545
    [No Abstract]   [Full Text] [Related]  

  • 39. [COMPARISON OF THE EFFECT OF DILOMBRINE AND PIPERAZINE ON THE DEVELOPMENT OF EGGS OF ASCARIS SUUM (GOEZE) IN THE PRESENCE OF P32].
    ROSTKOWSKA J; MOSKWA W; KOZLOWICZ S; BALCERZAK C
    Wiad Parazytol; 1964; 10():303-5. PubMed ID: 14348738
    [No Abstract]   [Full Text] [Related]  

  • 40. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.