These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1421473)

  • 1. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data.
    Brown EN; Czeisler CA
    J Biol Rhythms; 1992; 7(3):177-202. PubMed ID: 1421473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical model building and model criticism for human circadian data.
    Brown EN; Luithardt H
    J Biol Rhythms; 1999 Dec; 14(6):609-16. PubMed ID: 10643759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical model of the human core-temperature circadian rhythm.
    Brown EN; Choe Y; Luithardt H; Czeisler CA
    Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E669-83. PubMed ID: 10950837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of the human circadian pacemaker to moderately bright light.
    Boivin DB; Duffy JF; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):315-31. PubMed ID: 7772798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone.
    Khalsa SBS ; Jewett ME; Duffy JF; Czeisler CA
    J Biol Rhythms; 2000 Dec; 15(6):524-30. PubMed ID: 11106069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based human circadian phase estimation using a particle filter.
    Mott C; Dumont G; Boivin DB; Mollicone D
    IEEE Trans Biomed Eng; 2011 May; 58(5):1325-36. PubMed ID: 21257371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Getting through to circadian oscillators: why use constant routines?
    Duffy JF; Dijk DJ
    J Biol Rhythms; 2002 Feb; 17(1):4-13. PubMed ID: 11837947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimates of the daily phase and amplitude of the endogenous component of the circadian rhythm of core temperature in sedentary humans living nychthemerally.
    Waterhouse J; Weinert D; Minors D; Folkard S; Owens D; Atkinson G; Nevill A; Reilly T
    Biol Rhythm Res; 2000 Feb; 31(1):88-107. PubMed ID: 11543399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of amplitude recovery dynamics of two limit cycle oscillator models of the human circadian pacemaker.
    Indic P; Forger DB; St Hilaire MA; Dean DA; Brown EN; Kronauer RE; Klerman EB; Jewett ME
    Chronobiol Int; 2005; 22(4):613-29. PubMed ID: 16147894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the endogenous circadian temperature rhythm without keeping people awake.
    Carrier J; Monk TH
    J Biol Rhythms; 1997 Jun; 12(3):266-77. PubMed ID: 9181438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the amplitude dynamics of the human core-temperature circadian rhythm using a stochastic-dynamic model.
    Indic P; Brown EN
    J Theor Biol; 2006 Apr; 239(4):499-506. PubMed ID: 16223510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-amplitude resetting of the human circadian pacemaker via bright light: a further analysis.
    Jewett ME; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):295-314. PubMed ID: 7772797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in endogenous circadian rhythm of core temperature in senescent Fischer 344 rats.
    McDonald RB; Hoban-Higgins TM; Ruhe RC; Fuller CA; Horwitz BA
    Am J Physiol; 1999 Mar; 276(3 Pt 2):R824-30. PubMed ID: 10070144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of some different methods for purifying core temperature data from humans.
    Waterhouse J; Weinert D; Minors D; Folkard S; Owens D; Atkinson G; Macdonald I; Sytnik N; Tucker P; Reilly T
    Chronobiol Int; 2000 Jul; 17(4):539-66. PubMed ID: 10908129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes.
    Meerlo P; van den Hoofdakker RH; Koolhaas JM; Daan S
    J Biol Rhythms; 1997 Feb; 12(1):80-92. PubMed ID: 9104692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.
    Sim SY; Joo KM; Kim HB; Jang S; Kim B; Hong S; Kim S; Park KS
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):407-415. PubMed ID: 26915140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for estimating human circadian phase derived from multichannel ambulatory monitoring and artificial neural networks.
    Kolodyazhniy V; Späti J; Frey S; Götz T; Wirz-Justice A; Kräuchi K; Cajochen C; Wilhelm FH
    Chronobiol Int; 2012 Oct; 29(8):1078-97. PubMed ID: 22891656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian temperature rhythms of older people.
    Monk TH; Buysse DJ; Reynolds CF; Kupfer DJ; Houck PR
    Exp Gerontol; 1995; 30(5):455-74. PubMed ID: 8557094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of diurnal variations in human plasma melatonin levels.
    Brown EN; Choe Y; Shanahan TL; Czeisler CA
    Am J Physiol; 1997 Mar; 272(3 Pt 1):E506-16. PubMed ID: 9124558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.