BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 1421572)

  • 1. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.
    Hyman AA; Salser S; Drechsel DN; Unwin N; Mitchison TJ
    Mol Biol Cell; 1992 Oct; 3(10):1155-67. PubMed ID: 1421572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate.
    Müller-Reichert T; Chrétien D; Severin F; Hyman AA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3661-6. PubMed ID: 9520422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.
    Caplow M; Ruhlen RL; Shanks J
    J Cell Biol; 1994 Nov; 127(3):779-88. PubMed ID: 7962059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
    Caplow M; Shanks J
    Mol Biol Cell; 1996 Apr; 7(4):663-75. PubMed ID: 8730106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues.
    Tropini C; Roth EA; Zanic M; Gardner MK; Howard J
    PLoS One; 2012; 7(1):e30103. PubMed ID: 22272281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate.
    Hyman AA; Chrétien D; Arnal I; Wade RH
    J Cell Biol; 1995 Jan; 128(1-2):117-25. PubMed ID: 7822409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis.
    Vulevic B; Correia JJ
    Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimum GTP cap required to stabilize microtubules.
    Drechsel DN; Kirschner MW
    Curr Biol; 1994 Dec; 4(12):1053-61. PubMed ID: 7704569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin.
    Hamel E; Lustbader J; Lin CM
    Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubulin islands containing slowly hydrolyzable GTP analogs regulate the mechanism and kinetics of microtubule depolymerization.
    Bollinger JA; Imam ZI; Stevens MJ; Bachand GD
    Sci Rep; 2020 Aug; 10(1):13661. PubMed ID: 32788644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP.
    Dye RB; Williams RC
    Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium studies of a fluorescent paclitaxel derivative binding to microtubules.
    Li Y; Edsall R; Jagtap PG; Kingston DG; Bane S
    Biochemistry; 2000 Jan; 39(3):616-23. PubMed ID: 10642187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules.
    Weisenberg RC; Deery WJ; Dickinson PJ
    Biochemistry; 1976 Sep; 15(19):4248-54. PubMed ID: 963034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules.
    Vale RD; Coppin CM; Malik F; Kull FJ; Milligan RA
    J Biol Chem; 1994 Sep; 269(38):23769-75. PubMed ID: 7916345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanasone 5'-(alpha,beta-methylene)triphosphate enhances specifically microtubule nucleation and stops the treadmill of tubulin protomers.
    Sandoval IV; Weber K
    J Biol Chem; 1980 Jul; 255(14):6966-74. PubMed ID: 7391061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanosine-5'-triphosphate hydrolysis and tubulin polymerization. Review article.
    Carlier MF
    Mol Cell Biochem; 1982 Sep; 47(2):97-113. PubMed ID: 6755216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mechanical stability of microtubules polymerized with a slowly hydrolyzable nucleotide analogue.
    Munson KM; Mulugeta PG; Donhauser ZJ
    J Phys Chem B; 2007 May; 111(19):5053-7. PubMed ID: 17441764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of tubulin assembly: guanosine 5'-triphosphate hydrolysis decreases the rate of microtubule depolymerization.
    Bonne D; Pantaloni D
    Biochemistry; 1982 Mar; 21(5):1075-81. PubMed ID: 7074050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis.
    Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E
    Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.