These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 14219016)

  • 21. SYNTHESIS OF GLUTAMATE FROM ALPHA-OXOGLUTARATE AND AMMONIA IN RAT-LIVER MITOCHONDRIA. I. COMPARISON OF DIFFERENT HYDROGEN DONORS.
    TAGER JM; SLATER EC
    Biochim Biophys Acta; 1963 Oct; 77():227-45. PubMed ID: 14090441
    [No Abstract]   [Full Text] [Related]  

  • 22. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases.
    Kovár J; Klukanová H
    Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the enzyme activities involved in nitrogen assimilation in Mycobacterium smegmatis under various growth conditions.
    Ahmad S; Bhatnagar RK; Venkitasubramanian TA
    Ann Inst Pasteur Microbiol; 1986; 137B(3):231-7. PubMed ID: 2891360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica.
    Trotter PJ; Juco K; Le HT; Nelson K; Tamayo LI; Nicaud JM; Park YK
    Yeast; 2020 Jan; 37(1):103-115. PubMed ID: 31119792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activities of NAD-specific and NADP-specific isocitrate dehydrogenases in rat-liver mitochondria. Studies with D-threo-alpha-methylisocitrate.
    Smith CM; Plaut GW
    Eur J Biochem; 1979 Jun; 97(1):283-95. PubMed ID: 38961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isocitrate dehydrogenase and glutamate synthesis in Acetobacter suboxydans.
    Greenfield S; Claus GW
    J Bacteriol; 1969 Dec; 100(3):1264-70. PubMed ID: 5361215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a pyridine nucleotide-nonspecific glutamate dehydrogenase from Bacteroides thetaiotaomicron.
    Glass TL; Hylemon PB
    J Bacteriol; 1980 Mar; 141(3):1320-30. PubMed ID: 7364728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The metabolic fate of the products of citrate cleavage. Adenosine triphosphate-citrate lyase and nicotinamide-adenine dinucleotide phosphate-linked malate dehydrogenase in foetal and adult liver from ruminants and non-ruminants.
    Anson RW; Ballard FJ
    Biochem J; 1968 Aug; 108(5):705-13. PubMed ID: 4386407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [ROLE OF GLUTAMIC DEHYDROGENASE AND ASPARTIC/GLUTAMIC TRANSAMINASE IN THE OXIDATION OF GLUTAMATE BY SARCOSOMES FROM PIG HEART AND UTERUS].
    GAUTHERON D; DURAND R; PIALOUX N; GAUDEMER Y
    Bull Soc Chim Biol (Paris); 1964; 46():645-60. PubMed ID: 14222624
    [No Abstract]   [Full Text] [Related]  

  • 31. Heterotrophic carbon metabolism by Beggiatoa alba.
    Strohl WR; Cannon GC; Shively JM; Güde H; Hook LA; Lane CM; Larkin JM
    J Bacteriol; 1981 Nov; 148(2):572-83. PubMed ID: 6117547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis.
    Brown AT; Wittenberger CL
    J Bacteriol; 1972 Jan; 109(1):106-15. PubMed ID: 4400413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative aspects of some bacterial dehydrogenases and transhydrogenases.
    Ragland TE; Kawasaki T; Lowenstein JM
    J Bacteriol; 1966 Jan; 91(1):236-44. PubMed ID: 4379210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen assimilation in Rhodopseudomonas acidophila.
    Herbert RA; Siefert E; Pfennig N
    Arch Microbiol; 1978 Oct; 119(1):1-5. PubMed ID: 31145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PYRITHIAMINE ADAPTATION OF STAPHYLOCOCCUS AUREUS. II. TRICARBOXYLIC ACID CYCLE AND RELATED ENZYMES.
    DAS SK; CHATTERJEE GC
    J Bacteriol; 1963 Dec; 86(6):1157-64. PubMed ID: 14086084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CHEMICALLY DEFINED MEDIUM FOR GROWTH STREPTOCOCCUS PYOGENES.
    MICKELSON MN
    J Bacteriol; 1964 Jul; 88(1):158-64. PubMed ID: 14197881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium.
    Shiio I; Ozaki H
    J Biochem; 1970 Nov; 68(5):633-47. PubMed ID: 4394939
    [No Abstract]   [Full Text] [Related]  

  • 40. Metabolism of the glutamate group of amino acids in rat brain as a function of age.
    Rajeswari TS; Radha E
    Mech Ageing Dev; 1984 Feb; 24(2):139-49. PubMed ID: 6143862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.