These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14219035)

  • 1. UPTAKE OF VALINE AND GLYCYLVALINE BY LEUCONOSTOC MESENTEROIDES.
    SHELTON DC; NUTTER WE
    J Bacteriol; 1964 Oct; 88(4):1175-84. PubMed ID: 14219035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KINETIC STUDIES OF L-VALINE AND GLYCYL-L-VALINE UPTAKE BY LEUCONOSTOC MESENTEROIDES.
    YODER OC; BEAMER KC; CIPOLLONI PB; SHELTON DC
    Arch Biochem Biophys; 1965 May; 110():336-40. PubMed ID: 14342729
    [No Abstract]   [Full Text] [Related]  

  • 3. EFFECT OF ALANINE AND THREONINE ON THE SYNTHESIS OF SERINE BY LEUCONOSTOC MESENTEROIDES.
    O'BARR TP
    J Bacteriol; 1963 Dec; 86(6):1321-5. PubMed ID: 14086108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of amino acid transport in the dairy strain Leuconostoc mesenteroides subsp. mesenteroides CNRZ 1273.
    Gendrot F; Foucaud-Scheunemann C; Ferchichi M; Hemme D
    Lett Appl Microbiol; 2002; 35(4):291-5. PubMed ID: 12358690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane specificity of Leuconostoc mesenteroides for the stereoisomeric forms of glycine and valine dipeptides.
    Yoder OC; Beamer KC; Shelton DC
    Can J Biochem; 1967 Feb; 45(2):213-20. PubMed ID: 6021177
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition and transport kinetic studies involving L-leucine, L-valine, and their dipeptides in Leuconostoc mesenteroides.
    Mayshak J; Yoder OC; Beamer KC; Shelton DC
    Arch Biochem Biophys; 1966 Jan; 113(1):189-94. PubMed ID: 5941984
    [No Abstract]   [Full Text] [Related]  

  • 7. RELATIONSHIPS OF LYSINE AND HYDROXYLYSINE IN STREPTOCOCCUS FAECALIS AND LEUCONOSTOC MESENTEROIDES.
    SMITH WG; HENDERSON LM
    J Biol Chem; 1964 Jun; 239():1867-71. PubMed ID: 14213367
    [No Abstract]   [Full Text] [Related]  

  • 8. Proline-Based Cyclic Dipeptides from Korean Fermented Vegetable Kimchi and from
    Liu R; Kim AH; Kwak MK; Kang SO
    Front Microbiol; 2017; 8():761. PubMed ID: 28512456
    [No Abstract]   [Full Text] [Related]  

  • 9. The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport.
    Marty-Teysset C; Lolkema JS; Schmitt P; Diviès C; Konings WN
    J Bacteriol; 1996 Nov; 178(21):6209-15. PubMed ID: 8892820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides.
    Foucaud C; Hemme D; Desmazeaud M
    Lett Appl Microbiol; 2001 Jan; 32(1):20-5. PubMed ID: 11169036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of peptides and amino acids in the serine nutrition of Leuconostoc mesenteroides.
    O'BARR TP; PIERCE DA
    J Bacteriol; 1960 Apr; 79(4):519-23. PubMed ID: 14428004
    [No Abstract]   [Full Text] [Related]  

  • 12. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
    Kiritani K; Ohnishi K
    J Bacteriol; 1977 Feb; 129(2):589-98. PubMed ID: 320186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chemically defined minimal medium for the exponential growth of Leuconostoc mesenteroides ATCC8293.
    Kim YJ; Eom HJ; Seo EY; Lee DY; Kim JH; Han NS
    J Microbiol Biotechnol; 2012 Nov; 22(11):1518-22. PubMed ID: 23124343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EFFECT OF AMINO ACIDS ON UPTAKE OF L-HISTIDINE BY RAT BRAIN SLICES.
    NEAME KD
    J Neurochem; 1964 Feb; 11():67-76. PubMed ID: 14125146
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification and characterization of an oligopeptide transport system in Leuconostoc mesenteroides subsp. mesenteroides CNRZ 1463.
    Germain-Alpettaz V; Foucaud-Scheunemann C
    Lett Appl Microbiol; 2002; 35(1):68-73. PubMed ID: 12081553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS.
    DUNICAN LK; SEELEY HW
    J Bacteriol; 1963 Nov; 86(5):1079-83. PubMed ID: 14080775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STUDIES ON DEXTRANSUCRASE. I. FORMATION OF RIBOFLAVINYLGLUCOSIDE IN DESTRAN-PRODUCING CULTURES OF LEUCONOSTOC MESENTEROIDES.
    SUZUKI Y; KATAGIRI H
    J Vitaminol (Kyoto); 1963 Dec; 10():285-92. PubMed ID: 14167711
    [No Abstract]   [Full Text] [Related]  

  • 19. OCCURRENCE AND IDENTIFICATION OF CIS-VACCENIC ACID IN LEUCONOSTOC MESENTEROIDES.
    IKAWA M
    Biochim Biophys Acta; 1964 Apr; 84():208-10. PubMed ID: 14181302
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides ssp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris.
    Hache C; Cachon R; Wache Y; Belguendouz T; Riondet C; Deraedt A; Divies C
    Syst Appl Microbiol; 1999 Dec; 22(4):507-13. PubMed ID: 10794137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.