These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14219052)

  • 21. Evidence for ternary-complex formation with rabbit-muscle lactic acid dehydrogenase, diphosphopyridine nucleotide and pyruvic acid.
    FROMM HJ
    Biochim Biophys Acta; 1961 Sep; 52():199-200. PubMed ID: 13895501
    [No Abstract]   [Full Text] [Related]  

  • 22. Purification and properties of nicotinamide adenine dinucleotide-dependent D- and L- lactate dehydrogenases in a group N streptococcus.
    Mou L; Mulvena DP; Jonas HA; Jago GR
    J Bacteriol; 1972 Aug; 111(2):392-6. PubMed ID: 4340863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PYRUVATE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    DEIBEL RH; NIVEN CF
    J Bacteriol; 1964 Jul; 88(1):4-10. PubMed ID: 14197905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. COMPARISON OF THE ACTIONS OF HUMAN BRAIN, LIVER, AND HEART LACTIC DEHYDROGENASE VARIANTS ON NUCLEOTIDE ANALOGUES AND ON SUBSTRATE ANALOGUES IN THE ABSENCE AND IN THE PRESENCE OF OXALATE AND OXAMATE.
    NISSELBAUM JS; PACKER DE; BODANSKY O
    J Biol Chem; 1964 Sep; 239():2830-4. PubMed ID: 14216433
    [No Abstract]   [Full Text] [Related]  

  • 25. IN VIVO INFLUENCES OF HYDROGEN IONS ON LACTATE AND PYRUVATE OF BLOOD.
    TOBIN RB
    Am J Physiol; 1964 Sep; 207():601-5. PubMed ID: 14220030
    [No Abstract]   [Full Text] [Related]  

  • 26. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compartmented pyruvate in perfused working heart.
    Bünger R
    Am J Physiol; 1985 Sep; 249(3 Pt 2):H439-49. PubMed ID: 2994495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Staphylococcus aureus lactate dehydrogenase.
    Garrard W; Lascelles J
    J Bacteriol; 1968 Jan; 95(1):152-6. PubMed ID: 4295239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Studies on the effect of acoustic and ultrasonic fields on biochemical processes. VII. Effect on the pyruvic acid-lactic acid system and on the activity of lactic acid dehydrogenase in the blood of guinea pigs].
    ELBOWICZ-WANIEWSKA Z
    Acta Physiol Pol; 1962; 13():421-9. PubMed ID: 13889791
    [No Abstract]   [Full Text] [Related]  

  • 30. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action.
    Sistare FD; Haynes RC
    J Biol Chem; 1985 Oct; 260(23):12748-53. PubMed ID: 4044607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [COMPARATIVE STUDIES ON THE REDUCTION OF PYRUVATE, HYDROXYPYRUVATE AND GLYOXYLATE BY NAD-OXIDOREDUCTASES OF LACTATE DEHYDROGENASE, GLOXYLATE REDUCTASE AND D-GLYCERATE DEHYDROGENASE].
    LAUDAHN G
    Biochem Z; 1963 Jul; 337():449-61. PubMed ID: 14049968
    [No Abstract]   [Full Text] [Related]  

  • 32. Production of racemic lactic acid in Pediococcus cerevisiae cultures by two lactate dehydrogenases.
    Gordon GL; Doelle HW
    J Bacteriol; 1975 Feb; 121(2):600-7. PubMed ID: 234418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of D-lactate in plasma.
    Brandt RB
    Methods Enzymol; 1982; 89 Pt D():35-40. PubMed ID: 7144577
    [No Abstract]   [Full Text] [Related]  

  • 34. The redox-potential of the lactate-pyruvate system in blood as an indicator of the functional state of cellular oxidation.
    GUDBJARNASON S; BING RJ
    Biochim Biophys Acta; 1962 Jun; 60():158-62. PubMed ID: 13902595
    [No Abstract]   [Full Text] [Related]  

  • 35. INHIBITION OF LACTIC DEHYDROGENASE: A NEW APPROACH TO CANCER CHEMOTHERAPY.
    REYNOLDS VH; FLEMING JH; RICHIE RE; FOSTER JH; COLOWICK SP
    Surg Forum; 1963; 14():128-30. PubMed ID: 14064480
    [No Abstract]   [Full Text] [Related]  

  • 36. Regulation and function of lactate oxidation in Streptococcus faecium.
    London J
    J Bacteriol; 1968 Apr; 95(4):1380-7. PubMed ID: 5646625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775.
    Snoep JL; Teixeira de Mattos MJ; Postma PW; Neijssel OM
    Arch Microbiol; 1990; 154(1):50-5. PubMed ID: 2118752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis.
    Hedden MP; Buse MG
    Am J Physiol; 1982 Mar; 242(3):E184-92. PubMed ID: 7065176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of round spermatids from rats: lactate as the preferred substrate.
    Mita M; Hall PF
    Biol Reprod; 1982 Apr; 26(3):445-55. PubMed ID: 7082719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.