These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1422121)

  • 1. Amyloidogenesis in Alzheimer's disease: basic biology and animal models.
    Sisodia SS; Price DL
    Curr Opin Neurobiol; 1992 Oct; 2(5):648-52. PubMed ID: 1422121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease.
    Wyss-Coray T; Masliah E; Mallory M; McConlogue L; Johnson-Wood K; Lin C; Mucke L
    Nature; 1997 Oct; 389(6651):603-6. PubMed ID: 9335500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amyloid peptide and its precursor in Alzheimer's disease.
    Octave JN
    Rev Neurosci; 1995; 6(4):287-316. PubMed ID: 8845971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammation-associated amyloidogenesis. Lessons for Alzheimer's amyloidogenesis.
    Kisilevsky R
    Mol Neurobiol; 1994 Feb; 8(1):65-6. PubMed ID: 8086127
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular biology of the amyloid of Alzheimer's disease. An overview.
    Inestrosa NC; Soto C
    Biol Res; 1992; 25(2):63-72. PubMed ID: 1365703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concomitant detection of beta-amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer's disease, senile monkeys and triple transgenic mice.
    Härtig W; Goldhammer S; Bauer U; Wegner F; Wirths O; Bayer TA; Grosche J
    J Chem Neuroanat; 2010 Sep; 40(1):82-92. PubMed ID: 20347032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of the molecular mechanism of amyloid formation for the understanding of the pathogenesis of Alzheimer's disease and the development of therapeutic strategies.
    Lansbury PT
    Arzneimittelforschung; 1995 Mar; 45(3A):432-4. PubMed ID: 7763339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and molecular biology of Alzheimer's disease and animal models.
    Price DL; Sisodia SS
    Annu Rev Med; 1994; 45():435-46. PubMed ID: 8198393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-truncated Aβ
    Wirths O; Walter S; Kraus I; Klafki HW; Stazi M; Oberstein TJ; Ghiso J; Wiltfang J; Bayer TA; Weggen S
    Alzheimers Res Ther; 2017 Oct; 9(1):80. PubMed ID: 28978359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer's disease-related symptoms and pathology.
    Hao W; Liu Y; Liu S; Walter S; Grimm MO; Kiliaan AJ; Penke B; Hartmann T; Rübe CE; Menger MD; Fassbender K
    Brain; 2011 Jan; 134(Pt 1):278-92. PubMed ID: 21115468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of amyloidogenesis and memory impairment by estrogen deficiency through NF-κB dependent beta-secretase activation in presenilin 2 mutant mice.
    Hwang CJ; Park MH; Choi MK; Choi JS; Oh KW; Hwang DY; Han SB; Hong JT
    Brain Behav Immun; 2016 Mar; 53():113-122. PubMed ID: 26593275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation.
    Guix FX; Ill-Raga G; Bravo R; Nakaya T; de Fabritiis G; Coma M; Miscione GP; Villà-Freixa J; Suzuki T; Fernàndez-Busquets X; Valverde MA; de Strooper B; Muñoz FJ
    Brain; 2009 May; 132(Pt 5):1335-45. PubMed ID: 19251756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cholesterol and Alzheimer's disease].
    Kálmán J; Janka Z
    Orv Hetil; 2005 Sep; 146(37):1903-11. PubMed ID: 16255374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of an animal model for Alzheimer's disease: introduction of multiple human genomic transgenes to reproduce AD pathology in a rodent.
    Loring JF; Paszty C; Rose A; McIntosh TK; Murai H; Pierce JE; Schramm SR; Wymore K; Lee VM; Trojanowski JQ; Peterson KR
    Neurobiol Aging; 1996; 17(2):173-82. PubMed ID: 8744398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic gliosis triggers Alzheimer's disease-like processing of amyloid precursor protein.
    Bates KA; Fonte J; Robertson TA; Martins RN; Harvey AR
    Neuroscience; 2002; 113(4):785-96. PubMed ID: 12182886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept.
    Maezawa I; Nguyen HM; Di Lucente J; Jenkins DP; Singh V; Hilt S; Kim K; Rangaraju S; Levey AI; Wulff H; Jin LW
    Brain; 2018 Feb; 141(2):596-612. PubMed ID: 29272333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational mimicry in Alzheimer's disease. Role of apolipoproteins in amyloidogenesis.
    Wisniewski T; Golabek AA; Kida E; Wisniewski KE; Frangione B
    Am J Pathol; 1995 Aug; 147(2):238-44. PubMed ID: 7639323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of NAC in amyloidogenesis in Alzheimer's disease.
    Hashimoto M; Takenouchi T; Mallory M; Masliah E; Takeda A
    Am J Pathol; 2000 Feb; 156(2):734-6. PubMed ID: 10667911
    [No Abstract]   [Full Text] [Related]  

  • 19. Research advances in the biology of Alzheimer's disease.
    Tabaton M
    Clin Geriatr Med; 1994 May; 10(2):249-55. PubMed ID: 8039097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin.
    Peters DG; Connor JR; Meadowcroft MD
    Neurobiol Dis; 2015 Sep; 81():49-65. PubMed ID: 26303889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.