These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1422179)

  • 1. Cadmium uptake by brush border membrane vesicles from the rabbit renal external cortex.
    Mingard F; Diezi J
    J Trace Elem Electrolytes Health Dis; 1992 Jun; 6(2):111-5. PubMed ID: 1422179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium binding and sodium-dependent solute transport in renal brush-border membrane vesicles.
    Ahn DW; Kim YM; Kim KR; Park YS
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):212-8. PubMed ID: 9931280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent transport of cadmium in rat renal brush border membrane vesicles: cadmium efflux via H+-antiport.
    Endo T; Kimura O; Sakata M
    Toxicol Lett; 1998 Oct; 99(2):99-107. PubMed ID: 9817081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of zinc and copper on cadmium uptake by brush border membrane vesicles.
    Endo T; Kimura O; Hatakeyama M; Takada M; Sakata M
    Toxicol Lett; 1997 Apr; 91(2):111-20. PubMed ID: 9175847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct effect of cadmium on citrate uptake by isolated rat renal brush border membrane vesicles.
    Sato K; Kusaka Y; Okada K
    Toxicol Lett; 1995 Oct; 80(1-3):161-5. PubMed ID: 7482584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles.
    Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT
    Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citrate uptake by isolated rat renal brush border membrane vesicles in cadmium-intoxicated rats.
    Sato K; Kusaka Y; Zhang Q; Li B; Okada K; Nakakuki K; Muraoka R
    Ind Health; 1997 Jul; 35(3):388-93. PubMed ID: 9248223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia.
    Peerce BE; Peerce B; Clarke RD
    Am J Physiol Renal Physiol; 2004 May; 286(5):F955-64. PubMed ID: 15075191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium and oxalate uptake by the renal brush border membrane vesicles in magnesium-deficient rats.
    Rattan V; Sidhu H; Jethi RK; Thind SK; Nath R
    Biochem Mol Biol Int; 1994 Nov; 34(5):1017-26. PubMed ID: 7703898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats.
    Ahn DW; Park YS
    Toxicol Appl Pharmacol; 1995 Aug; 133(2):239-43. PubMed ID: 7645019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic characterization of zinc binding to brush border membranes from rat kidney cortex: interaction with cadmium.
    Prasad R; Kaur D; Kumar V
    Biochim Biophys Acta; 1996 Oct; 1284(1):69-78. PubMed ID: 8865817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium uptake by primary cultures of rat renal cortical epithelial cells: influence of cell density and other metal ions.
    Endo T; Shaikh ZA
    Toxicol Appl Pharmacol; 1993 Aug; 121(2):203-9. PubMed ID: 8346537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct effect of inorganic mercury on citrate uptake by isolated rat renal brush border membrane vesicles.
    Sato K; Kusaka Y; Zhang Q; Deguchi Y; Li B; Okada K; Nakakuki K; Muraoka R
    Ind Health; 1997 Oct; 35(4):456-60. PubMed ID: 9348716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretory transport of cadmium through intestinal brush border membrane via H(+)-antiport.
    Endo T; Kimura O; Saitoh H; Sakata M
    Toxicology; 2000 Sep; 150(1-3):129-36. PubMed ID: 10996669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new use of β-Ala-Lys (AMCA) as a transport reporter for PEPT1 and PEPT2 in renal brush border membrane vesicles from the outer cortex and outer medulla.
    Alghamdi OA; King N; Jones GL; Moens PDJ
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):960-964. PubMed ID: 29291378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of cis- and trans-substrate interactions at the tetraethylammonium/H+ exchanger of rabbit renal brush-border membrane vesicles.
    Wright SH; Wunz TM
    J Biol Chem; 1988 Dec; 263(36):19494-7. PubMed ID: 2848830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of acridine orange interaction with phospholipids and proteins in renal microvillus vesicles.
    Holmberg EG; Verkman AS; Dix JA
    Biophys Chem; 1989 Jul; 33(3):245-56. PubMed ID: 2804243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The integrity of renal cortical brush-border and basolateral membrane vesicles is damaged in vitro by nephrotoxic heavy metals.
    Herak-Kramberger CM; Sabolic I
    Toxicology; 2001 Jan; 156(2-3):139-47. PubMed ID: 11164616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.