BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14224827)

  • 1. AN ANALYSIS OF THE INHIBITION OF BETA-AMYLASE BY UREA.
    WEINTRAUB BD; HAMILTON GA; HENSHAW C; CHASE AM
    Arch Biochem Biophys; 1964 Aug; 107():224-38. PubMed ID: 14224827
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic model for the co-action of beta-amylase and debranching enzymes in the production of maltose.
    Jiahua Z
    Biotechnol Bioeng; 1999 Mar; 62(5):618-22. PubMed ID: 10099571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of co-immobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield.
    Atia KS; Ismail SA; El-Arnaouty MB; Dessouki AM
    Biotechnol Prog; 2003; 19(3):853-7. PubMed ID: 12790649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of an immobilized two-enzyme system, Beta-amylase--pullulanase, to an acrylic copolymer for the conversion of starch to maltose. III. Process kinetic studies on continuous reactors.
    Mårtensson K
    Biotechnol Bioeng; 1974 Dec; 16(12):1567-87. PubMed ID: 4474893
    [No Abstract]   [Full Text] [Related]  

  • 5. Preparation of an immobilized two-enzyme system, beta-amylase-pullulanase, to an acrylic copolymer for the conversion of starch to copolymer for the conversion of starch to maltose. I. Preparation and stability of immobilized beta-amylase.
    Mårtensson K
    Biotechnol Bioeng; 1974 May; 16(5):567-77. PubMed ID: 4857359
    [No Abstract]   [Full Text] [Related]  

  • 6. Preparation of an immobilized two-enzyme system, beta-amylase-pullulanase, to an acrylic copolymer for the conversion of starch to maltose. II. Cocoupling of the enzymes and use in a packed bed column.
    Mårtensson K
    Biotechnol Bioeng; 1974 May; 16(5):579-91. PubMed ID: 4857360
    [No Abstract]   [Full Text] [Related]  

  • 7. IMMUNOCHEMICAL STUDY OF TAKA AMYLASE A AND PHENYLAZOBENZOYL TAKA AMYLASE A.
    OKADA Y; MATSUOKA Y; YAGURA T; IKENAKA T; YAMAMURA Y
    J Biochem; 1964 Apr; 55():446-51. PubMed ID: 14170097
    [No Abstract]   [Full Text] [Related]  

  • 8. On the ability of pullulanase to stimulate the enzymic digestion of raw starch.
    Ueda S; Marshall JJ
    Carbohydr Res; 1980 Sep; 84(1):196-9. PubMed ID: 6158372
    [No Abstract]   [Full Text] [Related]  

  • 9. Cloning and characterization of the beta-amylase gene from Bacillus polymyxa.
    Friedberg F; Rhodes C
    J Bacteriol; 1986 Mar; 165(3):819-24. PubMed ID: 2419310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOME OBSERVATIONS ON THE PANCREATIC AMYLASE AND INTESTINAL MALTASE OF THE CHICK.
    LAWS BM; MOORE JH
    Can J Biochem Physiol; 1963 Oct; 41():2107-21. PubMed ID: 14083976
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of native and SH-modified beta-amylase of soybean with cyclohexadextrin and maltose.
    Mikami B; Nomura K; Morita Y
    J Biochem; 1983 Jul; 94(1):107-13. PubMed ID: 6194150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EFFECTS OF RELATED ANIONIC DETERGENTS ON BACTERIAL ALPHA-AMYLASE.
    POMERANZ Y
    Enzymologia; 1964 May; 27():8-13. PubMed ID: 14185865
    [No Abstract]   [Full Text] [Related]  

  • 13. A SACCHAROGENIC METHOD FOR ESTIMATING ELECTROPHORETIC AND CHROMATOGRAPHIC DISTRIBUTION OF HUMAN SERUM AMYLASE.
    UJIHIRA I; SEARCY RL; BERK JE; HAYASHI S
    Clin Chem; 1965 Feb; 11():97-112. PubMed ID: 14262217
    [No Abstract]   [Full Text] [Related]  

  • 14. THE CELL-BOUND ALPHA-AMYLASES OF STREPTOCOCCUS BOVIS.
    WALKER GJ
    Biochem J; 1965 Feb; 94(2):289-98. PubMed ID: 14346085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SEPARATION AND CHARACTERIZATION OF TWO RAT-INTESTINAL AMYLASES.
    DAHLQVIST A; THOMSON DL
    Biochem J; 1963 Nov; 89(2):272-7. PubMed ID: 14084613
    [No Abstract]   [Full Text] [Related]  

  • 16. DIFFERENT RESPONSES OF PSEUDOMONAS SACCHAROPHILA TO INDUCTION OF ALPHA-AMYLASE BY STARCH AND BY MALTOSE.
    AVERNER M; KLEIN HP
    Biochim Biophys Acta; 1963 Nov; 77():510-2. PubMed ID: 14089431
    [No Abstract]   [Full Text] [Related]  

  • 17. Pullulanase pretreatment of highly concentrated maltodextrin solution improves maltose yield during β-amylase-catalyzed saccharification.
    Li Z; Kong H; Li Z; Gu Z; Yang Q; Ban X; Hong Y; Cheng L; Li C
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130701. PubMed ID: 38458283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ENZYME REACTIONS IN STRUCTURALLY RESTRICTED SYSTEMS. IV. THE DIGESTION OF INSOLUBLE SUBSTRATES BY HYDROLYTIC ENZYMES.
    MCLAREN AD
    Enzymologia; 1963 Nov; 26():237-46. PubMed ID: 14089655
    [No Abstract]   [Full Text] [Related]  

  • 19. FORMATION AND DEGRADATION OF CYCLIC DEXTRINS BY INTRACELLULAR ENZYMES OF BACILLUS MACERANS.
    DEPINTO JA; CAMPBELL LL
    Science; 1964 Nov; 146(3647):1064-6. PubMed ID: 14202462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of β-amylase in water-oil-water enzyme emulsion liquid membrane (EELM) bioreactor for enzymatic conversion of starch to maltose.
    Priyanka BS; Rastogi NK
    Prep Biochem Biotechnol; 2020; 50(2):172-180. PubMed ID: 31846387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.