BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1422848)

  • 1. Changes of labile metabolites during anoxia in moderately hypo- and hyperthermic rats: correlation to membrane fluxes of K+.
    Katsura K; Minamisawa H; Ekholm A; Folbergrová J; Siesjö BK
    Brain Res; 1992 Sep; 590(1-2):6-12. PubMed ID: 1422848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation of cellular energy state in complete ischemia: relationship to dissipative ion fluxes.
    Ekholm A; Asplund B; Siesjö BK
    Exp Brain Res; 1992; 90(1):47-53. PubMed ID: 1381686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of energy failure and dissipative K+ flux during ischemia: role of preischemic plasma glucose concentration.
    Ekholm A; Katsura K; Siesjö BK
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):193-200. PubMed ID: 8436610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylase alpha and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+.
    Folbergrová J; Minamisawa H; Ekholm A; Siesjö BK
    J Neurochem; 1990 Nov; 55(5):1690-6. PubMed ID: 2213020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia.
    Ekholm A; Katsura K; Kristián T; Liu M; Folbergrová J; Siesjö BK
    Brain Res; 1993 Feb; 604(1-2):185-91. PubMed ID: 8457847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling among energy failure, loss of ion homeostasis, and phospholipase A2 and C activation during ischemia.
    Katsura K; Rodriguez de Turco EB; Folbergrová J; Bazan NG; Siesjö BK
    J Neurochem; 1993 Nov; 61(5):1677-84. PubMed ID: 8228987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate.
    Astrup J; Rehncrona S; Siesjö BK
    Brain Res; 1980 Oct; 199(1):161-74. PubMed ID: 7407619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling among changes in energy metabolism, acid-base homeostasis, and ion fluxes in ischemia.
    Katsura K; Ekholm A; Siesjö BK
    Can J Physiol Pharmacol; 1992; 70 Suppl():S170-5. PubMed ID: 1284229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal profile of changes in brain tissue extracellular space and extracellular ion (Na(+), K(+)) concentrations after cerebral ischemia and the effects of mild cerebral hypothermia.
    Mori K; Miyazaki M; Iwase H; Maeda M
    J Neurotrauma; 2002 Oct; 19(10):1261-70. PubMed ID: 12427333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes.
    Erecińska M; Dagani F
    J Gen Physiol; 1990 Apr; 95(4):591-616. PubMed ID: 2159972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain.
    Knickerbocker DL; Lutz PL
    J Exp Biol; 2001 Oct; 204(Pt 20):3547-51. PubMed ID: 11707503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of mitochondrial and plasma membrane function following hypoglycemic coma: coupling of ATP synthesis, K+ transport, and changes in extra- and intracellular pH.
    Katsura K; Folbergrová J; Bengtsson F; Kristián T; Gidö G; Siesjö BK
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):820-6. PubMed ID: 8360288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells.
    Silver IA; Deas J; Erecińska M
    Neuroscience; 1997 May; 78(2):589-601. PubMed ID: 9145812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compromised metabolic recovery following spontaneous spreading depression in the penumbra.
    Selman WR; Lust WD; Pundik S; Zhou Y; Ratcheson RA
    Brain Res; 2004 Mar; 999(2):167-74. PubMed ID: 14759495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC; Deslauriers R; Kupriyanov VV
    J Mol Cell Cardiol; 1994 Oct; 26(10):1377-92. PubMed ID: 7869398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of heat stress on metabolism of high-energy phosphates. Comparison of normothermic and hypothermic ischemia.
    Jayakumar J; Smolenski RT; Gray CC; Goodwin AT; Amrani M; Yacoub MH
    J Cardiovasc Surg (Torino); 1999 Aug; 40(4):481-6. PubMed ID: 10532203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of energetic state and potassium loss from anoxic myocardium.
    Rau EE; Langer GA
    Am J Physiol; 1978 Nov; 235(5):H537-43. PubMed ID: 727275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anoxia and ATP depletion on the membrane potential and permeability of dog liver.
    Lambotte L
    J Physiol; 1977 Jul; 269(1):53-76. PubMed ID: 894569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.