BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1422925)

  • 1. Comparison of in vivo acute lethal potency and in vitro cytotoxicity of 48 chemicals.
    Shrivastava R; Delomenie C; Chevalier A; John G; Ekwall B; Walum E; Massingham R
    Cell Biol Toxicol; 1992; 8(2):157-70. PubMed ID: 1422925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the in vitro cytotoxicities and acute in vivo toxicities of 59 chemicals.
    Clothier RH; Hulme LM; Smith M; Balls M
    Mol Toxicol; 1987-1988 Fall; 1(4):571-7. PubMed ID: 3509703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Registry of Cytotoxicity: toxicity testing in cell cultures to predict acute toxicity (LD50) and to reduce testing in animals.
    Halle W
    Altern Lab Anim; 2003; 31(2):89-198. PubMed ID: 15612878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of in vitro and in vivo biological activity of mycotoxins.
    Terse PS; Madhyastha MS; Zurovac O; Stringfellow D; Marquardt RR; Kemppainen BW
    Toxicon; 1993 Jul; 31(7):913-9. PubMed ID: 8212037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of two alternative methods for predicting the in vivo toxicities of metallic compounds.
    Hulme LM; Reeves HL; Clothier RH; Smith M; Balls M
    Mol Toxicol; 1987-1988 Fall; 1(4):589-96. PubMed ID: 3509705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cytotoxicity of 50 chemicals from the MEIC study determined by growth inhibition of ascites sarcoma BP8 cells: a comparison with acute toxicity data in man and rodents.
    Romert L; Jansson T; Jenssen D
    Toxicol Lett; 1994 Mar; 71(1):39-46. PubMed ID: 8140587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro comparative toxicity of selected drugs and chemicals in HeLa cells, Chang liver cells, and rat hepatocytes.
    Ekwall B; Acosta D
    Drug Chem Toxicol; 1982; 5(3):219-31. PubMed ID: 7151717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Prediction of human lethal concentrations by cytotoxicity data from 50 MEIC chemicals].
    Halle W; Spielmann H; Liebsch M
    ALTEX; 2000; 17(2):75-9. PubMed ID: 11085862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of the QSAR and in vitro approaches for developing non-animal methods to supersede the in vivo LD50 test.
    Phillips JC; Gibson WB; Yam J; Alden CL; Hard GC
    Food Chem Toxicol; 1990 May; 28(5):375-94. PubMed ID: 2199353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEIC--a new international multicenter project to evaluate the relevance to human toxicity of in vitro cytotoxicity tests.
    Bondesson I; Ekwall B; Hellberg S; Romert L; Stenberg K; Walum E
    Cell Biol Toxicol; 1989 Nov; 5(3):331-47. PubMed ID: 2688844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of acute toxicity in HPCT-1E3 hepatocytoma cells with liver-like transport activities.
    Kneuer C; Lakoma C; Honscha W
    Altern Lab Anim; 2007 Aug; 35(4):411-20. PubMed ID: 17850187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refinement and reduction of acute oral toxicity testing: a critical review of the use of cytotoxicity data.
    Schrage A; Hempel K; Schulz M; Kolle SN; van Ravenzwaay B; Landsiedel R
    Altern Lab Anim; 2011 Jul; 39(3):273-95. PubMed ID: 21777041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Human Lethal Doses and Concentrations of MEIC Chemicals from Rodent LD
    Dearden JC; Hewitt M
    Altern Lab Anim; 2021; 49(1-2):10-21. PubMed ID: 33626883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate analysis of the first 10 MEIC chemicals.
    Devillers J; Domine D; Bintein S
    SAR QSAR Environ Res; 1994; 2(4):261-70. PubMed ID: 8790647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between cytotoxicity in vitro and LD50-values.
    Ekwall B
    Acta Pharmacol Toxicol (Copenh); 1983; 52 Suppl 2():80-99. PubMed ID: 6880789
    [No Abstract]   [Full Text] [Related]  

  • 16. The integrated acute systemic toxicity project (ACuteTox) for the optimisation and validation of alternative in vitro tests.
    Clemedson C; Kolman A; Forsby A
    Altern Lab Anim; 2007 Mar; 35(1):33-8. PubMed ID: 17411349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of some cytotoxic endpoints using rat liver and HepG2 spheroids as in vitro models and their application in hepatotoxicity studies. I. Glucose metabolism and enzyme release as cytotoxic markers.
    Xu J; Ma M; Purcell WM
    Toxicol Appl Pharmacol; 2003 Jun; 189(2):100-11. PubMed ID: 12781628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in proteins in vitro as a means of predicting the acute toxicities of chemicals.
    Loukianov AS; Syomina TK; Korolev AM
    Altern Lab Anim; 2007 Mar; 35(1):123-36. PubMed ID: 17411361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute cytotoxicity of ten chemicals in human and rat cultured hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentrations.
    Jover R; Ponsoda X; Castell JV; Gómez-Lechón MJ
    Toxicol In Vitro; 1994 Feb; 8(1):47-54. PubMed ID: 20692888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of tacrine-induced cytotoxicity in primary cultures of rat, mouse, monkey, dog, rabbit, and human hepatocytes.
    Monteith DK; Theiss JC
    Drug Chem Toxicol; 1996; 19(1-2):59-70. PubMed ID: 8804553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.