BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1422952)

  • 1. Cultured embryonic bone shafts show osteogenic responses to mechanical loading.
    Zaman G; Dallas SL; Lanyon LE
    Calcif Tissue Int; 1992 Aug; 51(2):132-6. PubMed ID: 1422952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo.
    Dallas SL; Zaman G; Pead MJ; Lanyon LE
    J Bone Miner Res; 1993 Mar; 8(3):251-9. PubMed ID: 7681245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes.
    Pavlin D; Dove SB; Zadro R; Gluhak-Heinrich J
    Calcif Tissue Int; 2000 Aug; 67(2):163-72. PubMed ID: 10920222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone's early responses to mechanical loading differ in distinct genetic strains of chick: selection for enhanced growth reduces skeletal adaptability.
    Pitsillides AA; Rawlinson SC; Mosley JR; Lanyon LE
    J Bone Miner Res; 1999 Jun; 14(6):980-7. PubMed ID: 10352107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estrogen enhances the stimulation of bone collagen synthesis by loading and exogenous prostacyclin, but not prostaglandin E2, in organ cultures of rat ulnae.
    Cheng MZ; Zaman G; Lanyon LE
    J Bone Miner Res; 1994 Jun; 9(6):805-16. PubMed ID: 8079656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metalloproteinases in regions of the embryonic chick tibiotarsus.
    Cole A; Kuettner K; Schmid T
    Matrix Suppl; 1992; 1():393-4. PubMed ID: 1480068
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes.
    Zaman G; Pitsillides AA; Rawlinson SC; Suswillo RF; Mosley JR; Cheng MZ; Platts LA; Hukkanen M; Polak JM; Lanyon LE
    J Bone Miner Res; 1999 Jul; 14(7):1123-31. PubMed ID: 10404012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro.
    Roelofsen J; Klein-Nulend J; Burger EH
    J Biomech; 1995 Dec; 28(12):1493-503. PubMed ID: 8666589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First bone formation and the dissection of an osteogenic lineage in the embryonic chick tibia is revealed by monoclonal antibodies against osteoblasts.
    Bruder SP; Caplan AI
    Bone; 1989; 10(5):359-75. PubMed ID: 2481484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of bone and marrow on cartilage hypertrophy and degradation during 30-day serum-free culture of the embryonic chick tibia.
    Cole AA; Luchene LJ; Linsenmayer TF; Schmid TM
    Dev Dyn; 1992 Mar; 193(3):277-85. PubMed ID: 1600246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional collagen gel culture promotes osteoblastic phenotype in bone marrow derived cells.
    Kinoshita S; Finnegan M; Bucholz RW; Mizuno K
    Kobe J Med Sci; 1999 Oct; 45(5):201-11. PubMed ID: 10853186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo.
    Dodds RA; Ali N; Pead MJ; Lanyon LE
    J Bone Miner Res; 1993 Mar; 8(3):261-7. PubMed ID: 8456583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of broad frequency vibration on cultured osteoblasts.
    Tanaka SM; Li J; Duncan RL; Yokota H; Burr DB; Turner CH
    J Biomech; 2003 Jan; 36(1):73-80. PubMed ID: 12485640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins.
    Linsenmayer TF; Chen QA; Gibney E; Gordon MK; Marchant JK; Mayne R; Schmid TM
    Development; 1991 Jan; 111(1):191-6. PubMed ID: 2015794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The concentration of osteocalcin in the culture media of bone cultured in vitro subjected to intermittent mechanical load with the addition of 1,25(OH)2D3].
    Lozupone E; Favia A; Cafagna B; Cantatore FP
    Boll Soc Ital Biol Sper; 1993 May; 69(5):281-5. PubMed ID: 8129909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic and osteoclastic cell interaction: development of a co-culture system.
    Loomer PM; Ellen RP; Tenenbaum HC
    Cell Tissue Res; 1998 Oct; 294(1):99-108. PubMed ID: 9724460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase.
    Simão AM; Beloti MM; Rosa AL; de Oliveira PT; Granjeiro JM; Pizauro JM; Ciancaglini P
    Cell Biol Int; 2007 Nov; 31(11):1405-13. PubMed ID: 17689110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of collagen type transcripts in chick embryonic bone detected by in situ cDNA-mRNA hybridization.
    McDonald SA; Tuan RS
    Dev Biol; 1989 May; 133(1):221-34. PubMed ID: 2468543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of p38MAPK/NF-κB signaling pathways in osteoblasts differentiation in response to mechanical stretch.
    Wang L; Li JY; Zhang XZ; Liu L; Wan ZM; Li RX; Guo Y
    Ann Biomed Eng; 2012 Sep; 40(9):1884-94. PubMed ID: 22441665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone cell culture in a three-dimensional polymer bead stabilizes the differentiated phenotype and provides evidence that osteoblastic cells synthesize type III collagen and fibronectin.
    Majmudar G; Bole D; Goldstein SA; Bonadio J
    J Bone Miner Res; 1991 Aug; 6(8):869-81. PubMed ID: 1664648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.