BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 14231182)

  • 21. Effects of inert gases and nitrous oxide on the radiation sensitivity of HeLa cells.
    Markoe AM; Anigstein R; Schulz RJ
    Public Health Rep (1896); 1970 Mar; 85(3):200. PubMed ID: 4984873
    [No Abstract]   [Full Text] [Related]  

  • 22. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Measuring coronary circulation using an inert gas method--a comparison of common indicator gases].
    Wolpers HG; Böck J; Hoeft A; Korb H; Hellige G
    Z Kardiol; 1987 Feb; 76(2):95-101. PubMed ID: 3033924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption and elimination of inhalation anesthetics and inert gases in relation to body compartments.
    Ogli K
    Med J Osaka Univ; 1971 Sep; 22(1):33-77. PubMed ID: 4949771
    [No Abstract]   [Full Text] [Related]  

  • 25. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.
    Harris K; Armstrong SP; Campos-Pires R; Kiru L; Franks NP; Dickinson R
    Anesthesiology; 2013 Nov; 119(5):1137-48. PubMed ID: 23867231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms.
    Koziakova M; Harris K; Edge CJ; Franks NP; White IL; Dickinson R
    Br J Anaesth; 2019 Nov; 123(5):601-609. PubMed ID: 31470983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Advances in research on neuroprotective effects of inert gas].
    Chen S; Guo SX; Hong Y; Zhang JM
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2011 Jan; 40(1):101-6. PubMed ID: 21319382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The uses of helium and xenon in current clinical practice.
    Harris PD; Barnes R
    Anaesthesia; 2008 Mar; 63(3):284-93. PubMed ID: 18289236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antiapoptotic activity of argon and xenon.
    Spaggiari S; Kepp O; Rello-Varona S; Chaba K; Adjemian S; Pype J; Galluzzi L; Lemaire M; Kroemer G
    Cell Cycle; 2013 Aug; 12(16):2636-42. PubMed ID: 23907115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The adsorption of argon, krypton, and xenon on activated charcoal.
    Underhill DW
    Health Phys; 1996 Aug; 71(2):160-6. PubMed ID: 8690598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings.
    Zinelis S
    J Prosthet Dent; 2000 Nov; 84(5):575-82. PubMed ID: 11105014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection.
    Dickinson R; Franks NP
    Crit Care; 2010; 14(4):229. PubMed ID: 20836899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A generalized hydrate mechanism for gaseous anesthesia. I. Theory.
    Dorsch RR; De Rocco AG
    Physiol Chem Phys; 1973; 5(3):209-23. PubMed ID: 4749012
    [No Abstract]   [Full Text] [Related]  

  • 34. The compression-ordering and solubility-disordering effects of high pressure gases on phospholipid bilayers.
    Chin JH; Trudell JR; Cohen EN
    Life Sci; 1976 Mar; 18(5):489-97. PubMed ID: 1256249
    [No Abstract]   [Full Text] [Related]  

  • 35. Noble gas and neuroprotection: From bench to bedside.
    Yin H; Chen Z; Zhao H; Huang H; Liu W
    Front Pharmacol; 2022; 13():1028688. PubMed ID: 36532733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying medically relevant xenon protein targets by
    Winkler DA; Katz I; Warden A; Thornton AW; Farjot G
    Med Gas Res; 2023; 13(1):33-38. PubMed ID: 35946221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of inert gases in mammalian myocardium: comparison with a convection-diffusion model.
    Wolpers HG; Hoeft A; Korb H; Lichtlen PR; Hellige G
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H167-73. PubMed ID: 2375403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of carrier gases in the production of metastable argon atoms in a rf discharge.
    Rudinger K; Lu ZT; Mueller P
    Rev Sci Instrum; 2009 Mar; 80(3):036105. PubMed ID: 19334960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars.
    Owen T; Bar-Nun A; Kleinfeld I
    Nature; 1992 Jul; 358(6381):43-6. PubMed ID: 11536499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of oxygen and inert gases in Drosophila.
    Fenn WO
    Respir Physiol; 1967 Oct; 3(2):117-29. PubMed ID: 6050694
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.