These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1423344)

  • 21. 3-deoxypentosulose: an alpha-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2002 Mar; 50(6):1659-64. PubMed ID: 11879053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3-Deoxy-L-glycero-pentos-2-ulose (3-deoxy-L-xylosone) and L-threo-pentos-2-ulose (L-xylosone) as intermediates in the degradation of L-ascorbic acid.
    Shin DB; Feather MS
    Carbohydr Res; 1990 Dec; 208():246-50. PubMed ID: 2085811
    [No Abstract]   [Full Text] [Related]  

  • 23. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rearrangement of 3-deoxy-D-erythro-hexos-2-ulose in aqueous solution: NMR evidence of intramolecular 1,2-hydrogen transfer.
    Zhang W; Carmichael I; Serianni AS
    J Org Chem; 2011 Oct; 76(20):8151-8. PubMed ID: 21793547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Milieu dependence of isomeric composition of 1-deoxy-D-erythro-hexo-2,3-diulose in aqueous solution determined by high-resolution NMR spectroscopy.
    Kaufmann M; Haase PT; Mügge C; Kroh LW
    Carbohydr Res; 2012 Dec; 364():15-21. PubMed ID: 23147041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new reaction for the direct conversion of 4-azido-4-deoxy-D-galactoside into a 4-deoxy-D-erythro-hexos-3-ulose.
    Xue J; Wu J; Guo Z
    Org Lett; 2004 Apr; 6(9):1365-8. PubMed ID: 15101743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of branched-chain sugar derivatives from 1,2;5,6-di-O-isopropylidene-alpha-D-ribo-hexofuranos-3-ulose and 1,2;4,5-di-O-isopropylidene-beta-D-erythro-2-hexulopyranos-3-ulose.
    González Z; González A
    Carbohydr Res; 2000 Dec; 329(4):901-6. PubMed ID: 11125835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of 1-deoxy-D-erythro-hexo-2,3-diulose in the presence of lysine leads to formation of carboxylic acid amides.
    Smuda M; Voigt M; Glomb MA
    J Agric Food Chem; 2010 May; 58(10):6458-64. PubMed ID: 20429584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of 3,6-dideoxy-D-erythro-hexos-4-ulose (3,6-dideoxy-4-keto-D-glucose).
    Stevens CL; Schultze KW; Smith DJ; Pillai PM
    J Org Chem; 1975 Dec; 40(25):3704-8. PubMed ID: 1195042
    [No Abstract]   [Full Text] [Related]  

  • 30. Correlating changes that occur in chemical properties with the generation of antioxidant capacity in different sugar-amino acid Maillard reaction models.
    Chen XM; Kitts DD
    J Food Sci; 2011 Aug; 76(6):C831-7. PubMed ID: 21623789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars.
    Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactions of aminoguanidine with α-dicarbonyl compounds studied by electrospray ionization mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    Eur J Mass Spectrom (Chichester); 2012; 18(4):385-97. PubMed ID: 22971697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new and efficient entry to D-xylo-hexos-4-ulose and some derivatives thereof through epoxidation of the 3,4-hexeno derivative of diacetone-D-glucose.
    Attolino E; Catelani G; D'Andrea F; Landi M
    Carbohydr Res; 2006 Nov; 341(15):2498-506. PubMed ID: 16949562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of aminoguanidine on the glycation.
    Oimomi M; Igaki N; Ohara T; Sakai M; Nakamichi T; Hata F; Baba S
    Kobe J Med Sci; 1989 Dec; 35(5-6):255-9. PubMed ID: 2635241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose.
    Wells-Knecht KJ; Zyzak DV; Litchfield JE; Thorpe SR; Baynes JW
    Biochemistry; 1995 Mar; 34(11):3702-9. PubMed ID: 7893666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of pyrraline reference material.
    Henle T; Bachmann A
    Z Lebensm Unters Forsch; 1996 Jan; 202(1):72-4. PubMed ID: 8717098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate specificity of native dTDP-D-glucose-4,6-dehydratase: chemo-enzymatic syntheses of artificial and naturally occurring deoxy sugars.
    Naundorf A; Klaffke W
    Carbohydr Res; 1996 May; 285():141-50. PubMed ID: 9011374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Milieu dependence of isomeric composition of D-arabino-hexo-2-ulose in aqueous solution determined by high-resolution NMR spectroscopy.
    Kaufmann M; Haase PT; Mügge C; Kroh LW
    J Agric Food Chem; 2013 Oct; 61(43):10220-4. PubMed ID: 23822666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organocatalytic Synthesis of Higher-Carbon Sugars: Efficient Protocol for the Synthesis of Natural Sedoheptulose and d-Glycero-l-galacto-oct-2-ulose.
    Popik O; Pasternak-Suder M; Baś S; Mlynarski J
    ChemistryOpen; 2015 Dec; 4(6):717-21. PubMed ID: 27308197
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Tang W; Cui H; Sun F; Yu X; Hayat K; Hussain S; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Aug; 67(32):8994-9001. PubMed ID: 31347366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.