BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14234497)

  • 21. THE IMPORTANCE OF GLYOXYLATE IN AMINO ACID BIOSYNTHESIS IN PLANTS.
    SINHA SK; COSSINS EA
    Biochem J; 1965 Jul; 96(1):254-61. PubMed ID: 14343140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. THE REACTION OF GLYOXYLATE WITH TRIS BUFFER UNDER PHYSIOLOGICAL CONDITIONS.
    DUGGAN PF; DONNELLY DM; MELODY DP
    Ir J Med Sci; 1964 Apr; 460():163-8. PubMed ID: 14152515
    [No Abstract]   [Full Text] [Related]  

  • 23. The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans.
    KORNBERG HL; BEEVERS H
    Biochim Biophys Acta; 1957 Dec; 26(3):531-7. PubMed ID: 13499412
    [No Abstract]   [Full Text] [Related]  

  • 24. THE BIOSYNTHESIS OF RICINOLEIC ACID.
    JAMES AT; HADAWAY HC; WEBB JP
    Biochem J; 1965 May; 95(2):448-52. PubMed ID: 14340094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Membranes of glyoxysomes from castor bean endosperm: further investigations on the membrane bound enzymes of fatty acid degradation and of the glyoxylate cycle].
    Bieglmayer C; Nahler G; Ruis H
    Hoppe Seylers Z Physiol Chem; 1974 Sep; 355(9):1121-8. PubMed ID: 4461652
    [No Abstract]   [Full Text] [Related]  

  • 26. [OXIDATION OF ACETATE LABELED WITH C14 AND THE TRICARBOXYLIC ACID CYCLE IN EMBRYOS OF AMPHIBIA: EXPERIMENTS IN VIVO AND WITH ISOLATED MITOCHONDRIA].
    PETRUCCI D
    Arch Sci Biol (Bologna); 1964; 48():181-95. PubMed ID: 14210400
    [No Abstract]   [Full Text] [Related]  

  • 27. Enzymes of the glyoxylate cycle in germinating peanuts and castor beans.
    MARCUS A; VELASCO J
    J Biol Chem; 1960 Mar; 235():563-7. PubMed ID: 14420962
    [No Abstract]   [Full Text] [Related]  

  • 28. The glyoxylate cycle in germinating Ginkgo biloba seeds.
    Vanni P; Mastronuzzi E; Vincenzini MT; Firenzuoli AM
    Can J Biochem; 1973 Jun; 51(6):961-3. PubMed ID: 4717076
    [No Abstract]   [Full Text] [Related]  

  • 29. INDUCTION OF THE GLYOXYLATE CYCLE IN TETRAHYMEANA.
    LEVY MR; SCHERBAUM OH
    Arch Biochem Biophys; 1965 Jan; 109():116-21. PubMed ID: 14281934
    [No Abstract]   [Full Text] [Related]  

  • 30. Comparative effects of sesame seeds differing in lignan contents and composition on fatty acid oxidation in rat liver.
    Ide T; Azechi A; Kitade S; Kunimatsu Y; Suzuki N; Nakajima C; Ogata N
    J Oleo Sci; 2015; 64(2):211-22. PubMed ID: 25748381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IMPORTANCE OF FATTY ACID IN MYOCARDIAL METABOLISM.
    EVANS JR
    Circ Res; 1964 Nov; 15():SUPPL 2:96-108. PubMed ID: 14241668
    [No Abstract]   [Full Text] [Related]  

  • 32. AN ISOTOPIC METHOD FOR ASSAYING THE CONDENSATION OF GLYOXYLATE WITH ACETYL-COA AND OTHER SHORT-CHAIN FATTY ACID ACYL-COA DERIVATIVES.
    WEGENER WS; REEVES HC; AJL SJ
    Anal Biochem; 1965 Apr; 11():111-20. PubMed ID: 14328631
    [No Abstract]   [Full Text] [Related]  

  • 33. The metabolism of C2 compounds in microorganisms. 3. Synthesis of malate from acetate via the glyoxylate cycle.
    KORNBERG HL; MADSEN NB
    Biochem J; 1958 Mar; 68(3):549-57. PubMed ID: 13522658
    [No Abstract]   [Full Text] [Related]  

  • 34. ENZYMES OF THE TRICARBOXYLIC ACID CYCLE IN ACETIC ACID BACTERIA.
    WILLIAMS PJ; RAINBOW C
    J Gen Microbiol; 1964 May; 35():237-47. PubMed ID: 14179672
    [No Abstract]   [Full Text] [Related]  

  • 35. Interrelationships between the tricarboxylic acid and glyoxylate cycles studied with bacterial auxotrophs.
    REEVES HC; AJL SJ
    Can J Microbiol; 1962 Apr; 8():241-7. PubMed ID: 14491018
    [No Abstract]   [Full Text] [Related]  

  • 36. Cyanide-induced transition from endogenous carbohydrate to lipid oxidation as indicated by the carbon-13 content of respiratory CO2.
    Jacobson BS; Laties GG; Smith BN; Epstein S; Laties B
    Biochim Biophys Acta; 1970 Sep; 216(2):295-304. PubMed ID: 5504628
    [No Abstract]   [Full Text] [Related]  

  • 37. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon.
    Tenyang N; Ponka R; Tiencheu B; Djikeng FT; Azmeera T; Karuna MSL; Prasad RBN; Womeni HM
    Food Chem; 2017 Apr; 221():1308-1316. PubMed ID: 27979094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Function of the glyoxylate-condensing enzymes. I. Growth of Escherichia coli on n-valeric acid.
    Furmanski P; Wegener WS; Reeves HC; Ajl SJ
    J Bacteriol; 1967 Oct; 94(4):1075-81. PubMed ID: 4860907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CATABOLIC PATHWAYS OF CARBOHYDRATE IN THE INTERMOLT CRAYFISH, PACIFASTACUS LENIUSCULUS.
    PUYEAR RL; WANG CH; PRITCHARD AW
    Comp Biochem Physiol; 1965 Jan; 14():145-53. PubMed ID: 14288195
    [No Abstract]   [Full Text] [Related]  

  • 40. Variation in seed fatty acid composition and sequence divergence in the FAD2 gene coding region between wild and cultivated sesame.
    Chen Z; Tonnis B; Morris B; Wang RB; Zhang AL; Pinnow D; Wang ML
    J Agric Food Chem; 2014 Dec; 62(48):11706-10. PubMed ID: 25386691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.