These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 14234790)
61. Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species. He L; Chen Z; Wang S; Wu M; Setlow P; Li YQ Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29330188 [TBL] [Abstract][Full Text] [Related]
62. Plasmid-encoded genes influence exosporium assembly and morphology in Bacillus megaterium QM B1551 spores. Manetsberger J; Hall EA; Christie G FEMS Microbiol Lett; 2015 Sep; 362(18):fnv147. PubMed ID: 26316548 [TBL] [Abstract][Full Text] [Related]
63. KINETICS OF GERMINATION OF BACILLUS SPORES. VARY JC; HALVORSON HO J Bacteriol; 1965 May; 89(5):1340-7. PubMed ID: 14293008 [TBL] [Abstract][Full Text] [Related]
64. Dielectric properties of native and decoated spores of Bacillus megaterium. Carstensen EL; Marquis RE; Child SZ; Bender GR J Bacteriol; 1979 Dec; 140(3):917-28. PubMed ID: 118161 [TBL] [Abstract][Full Text] [Related]
65. The effects of wet heat treatment on the structural and chemical components of Bacillus sporothermodurans spores. Tabit FT; Buys E Int J Food Microbiol; 2010 Jun; 140(2-3):207-13. PubMed ID: 20417981 [TBL] [Abstract][Full Text] [Related]
66. Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Rao L; Feeherry FE; Ghosh S; Liao X; Lin X; Zhang P; Li Y; Doona CJ; Setlow P Food Microbiol; 2018 Jun; 72():112-127. PubMed ID: 29407388 [TBL] [Abstract][Full Text] [Related]
67. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. Balassa G; Milhaud P; Raulet E; Silva MT; Sousa JC J Gen Microbiol; 1979 Feb; 110(2):365-79. PubMed ID: 108357 [TBL] [Abstract][Full Text] [Related]
68. RESPONSES OF BACILLUS SUBTILIS SPORES TO IONIC ENVIRONMENTS DURING SPORULATION AND GERMINATION. FLEMING HP; ORDAL ZJ J Bacteriol; 1964 Dec; 88(6):1529-37. PubMed ID: 14240933 [TBL] [Abstract][Full Text] [Related]
69. The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products. Samapundo S; Heyndrickx M; Xhaferi R; de Baenst I; Devlieghere F Int J Food Microbiol; 2014 Jul; 181():10-8. PubMed ID: 24801270 [TBL] [Abstract][Full Text] [Related]
70. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248 [TBL] [Abstract][Full Text] [Related]
71. Analysis of the Raman spectra of Ca(2+)-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments. Kong L; Setlow P; Li YQ Analyst; 2012 Aug; 137(16):3683-9. PubMed ID: 22763367 [TBL] [Abstract][Full Text] [Related]
72. Monoethyl ester of dipicolinic acid from bacterial spores. FOSTER JW; PERRY JJ J Bacteriol; 1956 Sep; 72(3):295-300. PubMed ID: 13366916 [No Abstract] [Full Text] [Related]
73. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity. van der Voort M; Abee T J Appl Microbiol; 2013 Apr; 114(4):1201-10. PubMed ID: 23279596 [TBL] [Abstract][Full Text] [Related]
74. Pseudogermination in dipicolinic acid-less spores of a Bacillus cereus T mutant. Frank HA; Tonaki KI J Bacteriol; 1971 Apr; 106(1):292-3. PubMed ID: 4994601 [TBL] [Abstract][Full Text] [Related]
75. The preparation, germination properties and stability of superdormant spores of Bacillus cereus. Ghosh S; Setlow P J Appl Microbiol; 2010 Feb; 108(2):582-90. PubMed ID: 19674187 [TBL] [Abstract][Full Text] [Related]
76. Effect of trichloroacetic acid treatment on certain properties of spores of Bacillus cereus T. Shibata H; Uchida M; Hayashi H; Tani I Microbiol Immunol; 1979; 23(5):339-47. PubMed ID: 41162 [TBL] [Abstract][Full Text] [Related]
77. Quantitative aspects of exchangeable calcium in spores of Bacillus megaterium. Rode LJ; Foster JW J Bacteriol; 1966 Apr; 91(4):1589-93. PubMed ID: 4956344 [TBL] [Abstract][Full Text] [Related]
78. Correlation between spore structure and spore properties in Bacillus megaterium. Rode LJ J Bacteriol; 1968 Jun; 95(6):1979-86. PubMed ID: 4970217 [TBL] [Abstract][Full Text] [Related]
79. CHARACTERISTICS OF AN ABORTIVELY DISPORIC VARIANT OF BACILLUS CEREUS. YOUNG IE J Bacteriol; 1964 Jul; 88(1):242-54. PubMed ID: 14197894 [TBL] [Abstract][Full Text] [Related]
80. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Goodacre R; Shann B; Gilbert RJ; Timmins EM; McGovern AC; Alsberg BK; Kell DB; Logan NA Anal Chem; 2000 Jan; 72(1):119-27. PubMed ID: 10655643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]