These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1423522)

  • 21. Neurons with GABAergic phenotype in the visual system of Drosophila.
    Raghu SV; Claussen J; Borst A
    J Comp Neurol; 2013 Jan; 521(1):252-65. PubMed ID: 22886821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of Drosophila neurons that contain choline acetyltransferase messenger RNA: an in situ hybridization study.
    Barber RP; Sugihara H; Lee M; Vaughn JE; Salvaterra PM
    J Comp Neurol; 1989 Feb; 280(4):533-43. PubMed ID: 2496152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster.
    Meinertzhagen IA; O'Neil SD
    J Comp Neurol; 1991 Mar; 305(2):232-63. PubMed ID: 1902848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.
    Fisher YE; Leong JC; Sporar K; Ketkar MD; Gohl DM; Clandinin TR; Silies M
    Curr Biol; 2015 Dec; 25(24):3178-89. PubMed ID: 26670999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience.
    Scott EK; Reuter JE; Luo L
    BMC Neurosci; 2003 Jun; 4():14. PubMed ID: 12834538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The comprehensive connectome of a neural substrate for 'ON' motion detection in
    Takemura SY; Nern A; Chklovskii DB; Scheffer LK; Rubin GM; Meinertzhagen IA
    Elife; 2017 Apr; 6():. PubMed ID: 28432786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-Cadherin Orchestrates Self-Organization of Neurons within a Columnar Unit in the
    Trush O; Liu C; Han X; Nakai Y; Takayama R; Murakawa H; Carrillo JA; Takechi H; Hakeda-Suzuki S; Suzuki T; Sato M
    J Neurosci; 2019 Jul; 39(30):5861-5880. PubMed ID: 31175213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents.
    Ting CY; Yonekura S; Chung P; Hsu SN; Robertson HM; Chiba A; Lee CH
    Development; 2005 Mar; 132(5):953-63. PubMed ID: 15673571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping.
    Humphrey AL; Skeen LC; Norton TT
    J Comp Neurol; 1980 Aug; 192(3):549-66. PubMed ID: 7419744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata.
    Sztarker J; Tomsic D
    J Comp Neurol; 2014 Oct; 522(14):3177-93. PubMed ID: 24659096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual neuroscience: revealing the motion-detecting circuitry.
    Gilbert C
    Curr Biol; 2008 Sep; 18(17):R745-R748. PubMed ID: 18786376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The neurons of the first synaptic region of the optic neuropil of the firefly, Phausis splendidula l. (Coleoptera).
    Ohly KP
    Cell Tissue Res; 1975; 158(1):89-109. PubMed ID: 1149081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.
    McCasland JS; Woolsey TA
    J Comp Neurol; 1988 Dec; 278(4):555-69. PubMed ID: 3230170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila.
    Strother JA; Wu ST; Wong AM; Nern A; Rogers EM; Le JQ; Rubin GM; Reiser MB
    Neuron; 2017 Apr; 94(1):168-182.e10. PubMed ID: 28384470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Object-Detecting Neurons in Drosophila.
    Keleş MF; Frye MA
    Curr Biol; 2017 Mar; 27(5):680-687. PubMed ID: 28190726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen.
    Ito K; Suzuki K; Estes P; Ramaswami M; Yamamoto D; Strausfeld NJ
    Learn Mem; 1998; 5(1-2):52-77. PubMed ID: 10454372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.
    Douglass JK; Strausfeld NJ
    Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High activity neurons in the reticular formation of the medulla oblongata: a high-resolution autoradiographic 2-deoxyglucose study.
    Duncan GE; Kaldas RG; Mitra KE; Breese GR; Stumpf WE
    Neuroscience; 1990; 35(3):593-600. PubMed ID: 2381517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pigment-dispersing hormone-immunoreactive neurons and their relation to serotonergic neurons in the blowfly and cockroach visual system.
    Nässel DR; Shiga S; Wikstrand EM; Rao KR
    Cell Tissue Res; 1991 Dec; 266(3):511-23. PubMed ID: 1811881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera).
    Ehmer B; Gronenberg W
    J Comp Neurol; 2002 Sep; 451(4):362-73. PubMed ID: 12210130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.