These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 1423622)
21. Selective interaction of a conformationally-constrained Arg-Gly-Asp (RGD) motif with the integrin receptor alphavbeta3 expressed on human tumor cells. Lanza P; Felding-Habermann B; Ruggeri ZM; Zanetti M; Billetta R Blood Cells Mol Dis; 1997 Aug; 23(2):230-41. PubMed ID: 9268674 [TBL] [Abstract][Full Text] [Related]
22. Fibronectin unfolding revisited: modeling cell traction-mediated unfolding of the tenth type-III repeat. Gee EP; Ingber DE; Stultz CM PLoS One; 2008; 3(6):e2373. PubMed ID: 19020673 [TBL] [Abstract][Full Text] [Related]
23. Preferential antagonism of the interactions of the integrin alpha IIb beta 3 with immobilized glycoprotein ligands by snake-venom RGD (Arg-Gly-Asp) proteins. Evidence supporting a functional role for the amino acid residues flanking the tripeptide RGD in determining the inhibitory properties of snake-venom RGD proteins. Lu X; Williams JA; Deadman JJ; Salmon GP; Kakkar VV; Wilkinson JM; Baruch D; Authi KS; Rahman S Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):929-36. PubMed ID: 7529494 [TBL] [Abstract][Full Text] [Related]
24. NMR structure of the natural killer cell receptor 2B4 (CD244): implications for ligand recognition. Ames JB; Vyas V; Lusin JD; Mariuzza R Biochemistry; 2005 May; 44(17):6416-23. PubMed ID: 15850375 [TBL] [Abstract][Full Text] [Related]
25. Structural requirements for biological activity of the ninth and tenth FIII domains of human fibronectin. Grant RP; Spitzfaden C; Altroff H; Campbell ID; Mardon HJ J Biol Chem; 1997 Mar; 272(10):6159-66. PubMed ID: 9045628 [TBL] [Abstract][Full Text] [Related]
26. Biologically active Arg-Gly-Asp oligopeptides assume a type II beta-turn in solution. Johnson WC; Pagano TG; Basson CT; Madri JA; Gooley P; Armitage IM Biochemistry; 1993 Jan; 32(1):268-73. PubMed ID: 8418846 [TBL] [Abstract][Full Text] [Related]
28. The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains. Gehrmann M; Briknarová K; Bányai L; Patthy L; Llinás M Biol Chem; 2002 Jan; 383(1):137-48. PubMed ID: 11928808 [TBL] [Abstract][Full Text] [Related]
29. NMR analysis of the fibronectin cell-adhesive sequence, Arg-Gly-Asp, in a recombinant silk-like protein and a model peptide. Asakura T; Nishi H; Nagano A; Yoshida A; Nakazawa Y; Kamiya M; Demura M Biomacromolecules; 2011 Nov; 12(11):3910-6. PubMed ID: 21955288 [TBL] [Abstract][Full Text] [Related]
30. Solution structure of gamma-bungarotoxin: the functional significance of amino acid residues flanking the RGD motif in integrin binding. Shiu JH; Chen CY; Chang LS; Chen YC; Chen YC; Lo YH; Liu YC; Chuang WJ Proteins; 2004 Dec; 57(4):839-49. PubMed ID: 15390258 [TBL] [Abstract][Full Text] [Related]
31. Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Akke M; Liu J; Cavanagh J; Erickson HP; Palmer AG Nat Struct Biol; 1998 Jan; 5(1):55-9. PubMed ID: 9437430 [TBL] [Abstract][Full Text] [Related]
32. Use of substituted and tandem-repeated peptides to probe the relevance of the highly conserved RGD tripeptide in the immune response against foot-and-mouth disease virus. Novella IS; Borrego B; Mateu MG; Domingo E; Giralt E; Andreu D FEBS Lett; 1993 Sep; 330(3):253-9. PubMed ID: 7690714 [TBL] [Abstract][Full Text] [Related]
33. 1H resonance assignments and secondary structure of the 13.6 kDa glycosylated adhesion domain of human CD2. Wyss DF; Withka JM; Knoppers MH; Sterne KA; Recny MA; Wagner G Biochemistry; 1993 Oct; 32(41):10995-1006. PubMed ID: 8105887 [TBL] [Abstract][Full Text] [Related]
34. Secondary structure of a pair of fibronectin type 1 modules by two-dimensional nuclear magnetic resonance. Williams MJ; Phan I; Baron M; Driscoll PC; Campbell ID Biochemistry; 1993 Jul; 32(29):7388-95. PubMed ID: 8338836 [TBL] [Abstract][Full Text] [Related]
35. Module-module interactions in the cell binding region of fibronectin: stability, flexibility and specificity. Spitzfaden C; Grant RP; Mardon HJ; Campbell ID J Mol Biol; 1997 Feb; 265(5):565-79. PubMed ID: 9048949 [TBL] [Abstract][Full Text] [Related]
36. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. Hocking DC; Smith RK; McKeown-Longo PJ J Cell Biol; 1996 Apr; 133(2):431-44. PubMed ID: 8609174 [TBL] [Abstract][Full Text] [Related]
37. Integrins in cell adhesion and signaling. Akiyama SK Hum Cell; 1996 Sep; 9(3):181-6. PubMed ID: 9183647 [TBL] [Abstract][Full Text] [Related]
38. Short amino acid sequences derived from C1q receptor (C1q-R) show homology with the alpha chains of fibronectin and vitronectin receptors and collagen type IV. Ghebrehiwet B; Peerschke EI; Hong Y; Munoz P; Gorevic PD J Leukoc Biol; 1992 Jun; 51(6):546-56. PubMed ID: 1377218 [TBL] [Abstract][Full Text] [Related]
39. 1H NMR studies of echistatin in solution. Sequential resonance assignments and secondary structure. Dalvit C; Widmer H; Bovermann G; Breckenridge R; Metternich R Eur J Biochem; 1991 Dec; 202(2):315-21. PubMed ID: 1761035 [TBL] [Abstract][Full Text] [Related]
40. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. Li L; Huang HH; Badilla CL; Fernandez JM J Mol Biol; 2005 Jan; 345(4):817-26. PubMed ID: 15588828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]