These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 1423770)
1. Effect of glutathione on lambda deoxyribonucleic acid strand breaks in the reaction system of glutathione-alloxan in the presence of Fe(3+)-ethylenediaminetetraacetic acid. Sakurai K; Haga K; Ogiso T Chem Pharm Bull (Tokyo); 1992 Aug; 40(8):2147-50. PubMed ID: 1423770 [TBL] [Abstract][Full Text] [Related]
2. A role of iron in lambda DNA strand breaks in the reaction system of alloxan with reduced glutathione: iron(III) binding to the DNA. Sakurai K; Haga K; Ogiso T Biol Pharm Bull; 1994 Feb; 17(2):227-31. PubMed ID: 8205121 [TBL] [Abstract][Full Text] [Related]
3. Effect of ferritin on lambda DNA strand breaks in the reaction system of alloxan plus NADPH-cytochrome P450 reductase: ferritin's role in diabetogenic action of alloxan. Sakurai K; Ogiso T Biol Pharm Bull; 1995 Feb; 18(2):262-6. PubMed ID: 7742795 [TBL] [Abstract][Full Text] [Related]
4. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related]
5. Interaction of nitric oxide with glutathione or cysteine generates reactive oxygen species causing DNA single strand breaks. Kikugawa K; Oikawa N; Miyazawa A; Shindo K; Kato T Biol Pharm Bull; 2005 Jun; 28(6):998-1003. PubMed ID: 15930734 [TBL] [Abstract][Full Text] [Related]
6. HPLC investigation on Ni(II)-mediated DNA damage in the presence of t-butyl hydroperoxide and glutathione. Shi X; Mao Y; Ahmed N; Jiang H J Inorg Biochem; 1995 Feb; 57(2):91-102. PubMed ID: 7861128 [TBL] [Abstract][Full Text] [Related]
7. The generation of DNA single-strand breaks during the reduction of chromate by ascorbic acid and/or glutathione in vitro. Kortenkamp A; O'Brien P Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):237-41. PubMed ID: 7843105 [TBL] [Abstract][Full Text] [Related]
8. Protection by superoxide dismutase, catalase, and poly(ADP-ribose) synthetase inhibitors against alloxan- and streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis. Uchigata Y; Yamamoto H; Kawamura A; Okamoto H J Biol Chem; 1982 Jun; 257(11):6084-8. PubMed ID: 6281256 [TBL] [Abstract][Full Text] [Related]
9. The DNA cleavage induced by a chromium(V) complex and by chromate and glutathione is mediated by activated oxygen species. Kortenkamp A; Oetken G; Beyersmann D Mutat Res; 1990 Oct; 232(2):155-61. PubMed ID: 2215525 [TBL] [Abstract][Full Text] [Related]
10. Glutathione-mediated redox cycling of alloxan. Mechanisms of superoxide dismutase inhibition and of metal-catalyzed OH. formation. Winterbourn CC; Munday R Biochem Pharmacol; 1989 Jan; 38(2):271-7. PubMed ID: 2536542 [TBL] [Abstract][Full Text] [Related]
11. Alloxan-induced luminol luminescence as a tool for investigating mechanisms of radical-mediated diabetogenicity. Grankvist K Biochem J; 1981 Dec; 200(3):685-90. PubMed ID: 7342976 [TBL] [Abstract][Full Text] [Related]
12. Modification of radiation-induced strand breaks by glutathione: comparison of single- and double-strand breaks in SV40 DNA. Ayene IS; Koch CJ; Krisch RE Radiat Res; 1995 Oct; 144(1):1-8. PubMed ID: 7568762 [TBL] [Abstract][Full Text] [Related]
13. Alloxan- and glutathione-dependent ferritin iron release and lipid peroxidation. Reif DW; Samokyszyn VM; Miller DM; Aust SD Arch Biochem Biophys; 1989 Mar; 269(2):407-14. PubMed ID: 2537598 [TBL] [Abstract][Full Text] [Related]
14. Glutathione/Fe3+/O2-mediated DNA strand breaks and 8-hydroxydeoxyguanosine formation. Enhancement by copper, zinc superoxide dismutase. Park JW; Floyd RA Biochim Biophys Acta; 1997 Aug; 1336(2):263-8. PubMed ID: 9305798 [TBL] [Abstract][Full Text] [Related]
15. Reactive oxygen species-induced DNA damage and its modification: a chemical investigation. Yu TW; Anderson D Mutat Res; 1997 Oct; 379(2):201-10. PubMed ID: 9357549 [TBL] [Abstract][Full Text] [Related]
16. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Li Y; Trush MA Carcinogenesis; 1993 Jul; 14(7):1303-11. PubMed ID: 8392444 [TBL] [Abstract][Full Text] [Related]
17. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation. Spear N; Aust SD Arch Biochem Biophys; 1995 Dec; 324(1):111-6. PubMed ID: 7503544 [TBL] [Abstract][Full Text] [Related]
18. DNA damage induced by catechol derivatives. Miura T; Muraoka S; Fujimoto Y; Zhao K Chem Biol Interact; 2000 May; 126(2):125-36. PubMed ID: 10862813 [TBL] [Abstract][Full Text] [Related]
19. Simulation of the cellular oxygen effect with an SV40 DNA model system using DNA strand breaks as an end point. Ayene IS; Koch CJ; Krisch RE Radiat Res; 1996 Nov; 146(5):501-9. PubMed ID: 8896576 [TBL] [Abstract][Full Text] [Related]
20. Generation of PM2 DNA breaks in the course of reduction of chromium(VI) by glutathione. Kortenkamp A; Ozolins Z; Beyersmann D; O'Brien P Mutat Res; 1989 Feb; 216(1):19-26. PubMed ID: 2918862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]