These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. Carter AJ; Laird JR; Kufs WM; Bailey L; Hoopes TG; Reeves T; Farb A; Virmani R J Am Coll Cardiol; 1996 Apr; 27(5):1270-7. PubMed ID: 8609355 [TBL] [Abstract][Full Text] [Related]
3. Restenosis following placement of an intracoronary heparin treated tantulum stent in the hyperlipidemic miniature swine model. Jenkins JS; Webel R; Laughlin MH; Rowland SM; Yoklavich MF; Amann JF; Branson K; Myers PR J Invasive Cardiol; 1995; 7(6):173-82. PubMed ID: 10155102 [TBL] [Abstract][Full Text] [Related]
4. Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents. Holmes DR; Camrud AR; Jorgenson MA; Edwards WD; Schwartz RS J Am Coll Cardiol; 1994 Aug; 24(2):525-31. PubMed ID: 8034892 [TBL] [Abstract][Full Text] [Related]
5. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. Karas SP; Gravanis MB; Santoian EC; Robinson KA; Anderberg KA; King SB J Am Coll Cardiol; 1992 Aug; 20(2):467-74. PubMed ID: 1634687 [TBL] [Abstract][Full Text] [Related]
6. Stents covered by an autologous arterial graft in porcine coronary arteries: feasibility, vascular injury and effect on neointimal hyperplasia. Stefanadis C; Toutouzas K; Tsiamis E; Vlachopoulos C; Vaina S; Tsekoura D; Haldi L; Stefanadi E; Gravanis M; Toutouzas P Cardiovasc Res; 1999 Feb; 41(2):433-42. PubMed ID: 10341842 [TBL] [Abstract][Full Text] [Related]
7. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. Lincoff AM; Furst JG; Ellis SG; Tuch RJ; Topol EJ J Am Coll Cardiol; 1997 Mar; 29(4):808-16. PubMed ID: 9091528 [TBL] [Abstract][Full Text] [Related]
8. High dose rate intracoronary radiation for inhibition of neointimal formation in the stented and balloon-injured porcine models of restenosis: angiographic, morphometric, and histopathologic analyses. Mazur W; Ali MN; Khan MM; Dabaghi SF; DeFelice CA; Paradis P; Butler EB; Wright AE; Fajardo LF; French BA; Raizner AE Int J Radiat Oncol Biol Phys; 1996 Nov; 36(4):777-88. PubMed ID: 8960503 [TBL] [Abstract][Full Text] [Related]
9. Experimental evaluation of a short transitional edge protection balloon for intracoronary stent deployment. Carter AJ; Lee DP; Suzuki T; Bailey L; Lansky A; Jones R; Virmani R Catheter Cardiovasc Interv; 2000 Sep; 51(1):112-9. PubMed ID: 10973033 [TBL] [Abstract][Full Text] [Related]
10. Development of a polymer endovascular prosthesis and its implantation in porcine arteries. van der Giessen WJ; Slager CJ; van Beusekom HM; van Ingen Schenau DS; Huijts RA; Schuurbiers JC; de Klein WJ; Serruys PW; Verdouw PD J Interv Cardiol; 1992 Sep; 5(3):175-85. PubMed ID: 10150957 [TBL] [Abstract][Full Text] [Related]
11. The effects of uncontrolled hyperglycemia on thrombosis and formation of neointima after coronary stent placement in a novel diabetic porcine model of restenosis. Carter AJ; Bailey L; Devries J; Hubbard B Coron Artery Dis; 2000 Sep; 11(6):473-9. PubMed ID: 10966133 [TBL] [Abstract][Full Text] [Related]
12. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model. Kipshidze NN; Iversen P; Kim HS; Yiazdi H; Dangas G; Seaborn R; New G; Tio F; Waksman R; Mehran R; Tsapenko M; Stone GW; Roubin GS; Iyer S; Leon MB; Moses JW Catheter Cardiovasc Interv; 2004 Apr; 61(4):518-27. PubMed ID: 15065150 [TBL] [Abstract][Full Text] [Related]
13. Intraarterial biocompatibility of polyethylene terephthalate self-expandable stents implanted in porcine peripheral arteries. De Scheerder IK; Wilczek KV; Verbeken EV; Barios L; Piessens J; De Geest H Acad Radiol; 1995 Feb; 2(2):154-8. PubMed ID: 9419540 [TBL] [Abstract][Full Text] [Related]
14. Stent design favorably influences the vascular response in normal porcine coronary arteries. Carter AJ; Scott D; Rahdert D; Bailey L; De Vries J ; Ayerdi K; Turnlund T; Jones R; Virmani R; Fischell TA J Invasive Cardiol; 1999 Mar; 11(3):127-34. PubMed ID: 10745499 [TBL] [Abstract][Full Text] [Related]
15. Neointimal hyperplasia persists at six months after sirolimus-eluting stent implantation in diabetic porcine. Zhang Q; Lu L; Pu L; Zhang R; Shen J; Zhu Z; Hu J; Yang Z; Chen Q; Shen W Cardiovasc Diabetol; 2007 Jun; 6():16. PubMed ID: 17550588 [TBL] [Abstract][Full Text] [Related]
17. Restenosis is not associated with stent length in a pig model of coronary stent implantation. Koutouzis M; Papalois A; Kyrzopoulos S; Dafnomili P; Kyriakides ZS Cardiol J; 2008; 15(5):458-62. PubMed ID: 18810722 [TBL] [Abstract][Full Text] [Related]
18. Segmental vessel wall shear stress and neointimal formation after sirolimus-eluting stent implantation: physiological insights in a porcine coronary model. Carter AJ; Wei W; Gibson L; Collingwood R; Tio F; Dooley J; Kopia GA Cardiovasc Revasc Med; 2005; 6(2):58-64. PubMed ID: 16263360 [TBL] [Abstract][Full Text] [Related]
19. Local methylprednisolone inhibition of foreign body response to coated intracoronary stents. de Scheerder I; Wang K; Wilczek K; van Dorpe J; Verbeken E; Desmet W; Schacht E; Piessens J Coron Artery Dis; 1996 Feb; 7(2):161-6. PubMed ID: 8813449 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility of tetramethylpyrazine-eluting stents in normal porcine coronary arteries. Ma GS; Chen LJ; Chen Z; Ding S; Shen CX; Feng Y Biomed Pharmacother; 2008 Feb; 62(2):125-9. PubMed ID: 17764890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]