These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14240949)

  • 21. PRODUCTION OF AFLATOXINS IN SUBMERGED CULTURE.
    MATELES RI; ADYE JC
    Appl Microbiol; 1965 Mar; 13(2):208-11. PubMed ID: 14325880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of nitrite and nitrate by actinomycetes and fungi.
    HIRSCH P; OVERREIN L; ALEXANDER M
    J Bacteriol; 1961 Sep; 82(3):442-8. PubMed ID: 13714587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ENZYMATIC STUDY ON ASSIMILATION OF UREA AND AMMONIA IN TISSUES OF HIGHER PLANTS.
    FURUTANI S; OMURA H; OSAJIMA Y; YAMAFUJI K
    Enzymologia; 1965 May; 28():278-303. PubMed ID: 14326026
    [No Abstract]   [Full Text] [Related]  

  • 24. Effects of ammonia, methylamine, and hydroxylamine on the adaptive assimilation of nitrite and nitrate by a Mycobacterium.
    DETURK WE; BERNHEIM F
    J Bacteriol; 1958 Jun; 75(6):691-6. PubMed ID: 13549373
    [No Abstract]   [Full Text] [Related]  

  • 25. Nitrification by plants that also fix nitrogen.
    Hipkin CR; Simpson DJ; Wainwright SJ; Salem MA
    Nature; 2004 Jul; 430(6995):98-101. PubMed ID: 15229604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Symposium on metabolism of inorganic compounds. II. Enzymatic pathways of nitrate, nitrite, and hydroxylamine metabolisms.
    NASON A
    Bacteriol Rev; 1962 Mar; 26(1):16-41. PubMed ID: 14478459
    [No Abstract]   [Full Text] [Related]  

  • 27. Utilization of nitrate or nitrite as single nitrogen source by Mycobacterium avium.
    McCarthy CM
    J Clin Microbiol; 1987 Feb; 25(2):263-7. PubMed ID: 3818923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.
    Tiso M; Schechter AN
    PLoS One; 2015; 10(3):e0119712. PubMed ID: 25803049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of ammonia and hydroxylamine to nitrate in the rat.
    Saul RL; Archer MC
    IARC Sci Publ; 1984; (57):241-6. PubMed ID: 6533014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specificity of ammonia-, hydroxylamine-, hyponitrite- or nitrite dehydrogenase, and determination of intermediates in the inorganic nitrogen cycle.
    YAMAFUJI K; OSAJIMA Y
    Enzymologia; 1961 Feb; 22():344-56. PubMed ID: 13787103
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of inorganic nitrogen sources on the production of PP-V [(10Z)-12-carboxyl-monascorubramine] and the Expression of the nitrate assimilation gene cluster by Penicillium sp. AZ.
    Arai T; Umemura S; Ota T; Ogihara J; Kato J; Kasumi T
    Biosci Biotechnol Biochem; 2012; 76(1):120-4. PubMed ID: 22232256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. METABOLIC VIROGENS HAVING MUTAGENIC ACTION AND CHROMOSOMAL PREVIRUSES.
    YAMAFUJI K
    Enzymologia; 1964 Sep; 27():217-74. PubMed ID: 14230971
    [No Abstract]   [Full Text] [Related]  

  • 33. ESTIMATION OF THE NITRIC OXIDE FORMED FROM HYDROXYLAMINE BY NITROSOMONAS.
    ANDERSON JH
    Biochem J; 1965 Jan; 94(1):236-9. PubMed ID: 14342235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of the biomass history from carbon and nitrogen substrate consumption, ammonia release and proton transfer during solid cultures of Geotrichum candidum and Penicillium camembertii.
    Aldarf M; Amrane A; Prigent Y
    Appl Microbiol Biotechnol; 2002 May; 58(6):823-9. PubMed ID: 12021804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the biochemistry of Penicillium charlesii. Influence of various dicarboxylic acids on galactocarolose synthesis.
    Jordan JM; Gander JE
    Biochem J; 1966 Sep; 100(3):694-701. PubMed ID: 5969282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fate of nitrate acquired by the tubeworm Riftia pachyptila.
    Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F
    Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. STUDIES OF FACTORS DETERMINING THE BIOSYNTHESIS OF SECONDARY METABOLITIES IN MOULDS.
    GATENBECK S; SJOELAND S
    Biochim Biophys Acta; 1964 Nov; 93():246-50. PubMed ID: 14251302
    [No Abstract]   [Full Text] [Related]  

  • 38. ENZYMATIC OXALATE DECARBOXYLATION IN ASPERGILLUS NIGER.
    EMILIANI E; BEKES P
    Arch Biochem Biophys; 1964 Jun; 105():488-93. PubMed ID: 14236631
    [No Abstract]   [Full Text] [Related]  

  • 39. The reduction of nitrate, nitrite and hydroxylamine by E. coli.
    LASCELLES J; STILL JL
    Aust J Exp Biol Med Sci; 1946 Sep; 24(3):159-67. PubMed ID: 20273970
    [No Abstract]   [Full Text] [Related]  

  • 40. Characteristics of nitrogen transformation and intracellular nitrite accumulation by the hypothermia bacterium Arthrobacter arilaitensis.
    He T; Xie D; Ni J; Li Z; Li Z
    Sci Total Environ; 2020 Jan; 701():134730. PubMed ID: 31726404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.